Machine Learning with Neural Networks
Kierunek studiów: Biofizyka
Kod programu: W4-S2BFA21.2021

Nazwa modułu: | Machine Learning with Neural Networks |
---|---|
Kod modułu: | W4-2BF-MB-21-17 |
Kod programu: | W4-S2BFA21.2021 |
Semestr: | semestr letni 2021/2022 |
Język wykładowy: | angielski |
Forma zaliczenia: | zaliczenie |
Punkty ECTS: | 4 |
Opis: | Course syllabus:
(1) Introduction to Machine Learning (fundamental problem and its inherent complexity; general approaches for its solution)
(2) Classic Neural Networks models (Hopfield model; recurrent Boltzmann Machines (BM) and Restricted Boltzmann Machines (RBM); learning with BM y RBM: gradient descent, Contrastive Divergence and its variants; single-layer perceptrons (SLP): lineal and logistic regression, Rosenblat perceptron; multi-layer perceptrons (MLP): learning with MLP, back-propagation; Convolutional Neural Networks (CNN): model, link to MLP, and learning)
(3) Deep Learning: link with classical models and modern learning techniques. |
Wymagania wstępne: | (brak informacji) |
Literatura podstawowa: | (brak informacji) |
Efekt modułowy | Kody efektów kierunkowych do których odnosi się efekt modułowy [stopień realizacji: skala 1-5] |
---|---|
students will be able to state the fundamental problem and complexity of Machine Learning, and acquire a global view of the different Machine Learning techniques [MB_17_1] |
KBF_W02 [4/5] |
students will be able to understand and explain classical models of Neural Networks such as the Hopfield networks, Boltzmann Machines, Single- and Multi-layer Perceptrons, and Convolutional networks [MB_17_2] |
KBF_W02 [4/5] |
students will be able to implement the standard training techniques in these models, and put them in relation with the issue of the Deep Learning and its solution techniques [MB_17_3] |
KBF_W02 [4/5] |
Typ | Opis | Kody efektów modułowych do których odnosi się sposób weryfikacji |
---|---|---|
zaliczenie [MB_17_w_1] | The final mark for this course is computed as 0.2*M_1 + 0.2*M_2 + 0.6*M_3, where M_n is the grade of each practical homework. For the latter, the students will be provided with a code structure, and they will have to implement specific functions and run virtual experiments in which different machine learning strategies will be
employed |
MB_17_1 |
Rodzaj prowadzonych zajęć | Praca własna studenta | Sposoby weryfikacji | |||
---|---|---|---|---|---|
Typ | Opis (z uwzględnieniem metod dydaktycznych) | Liczba godzin | Opis | Liczba godzin | |
wykład [MB_17_fs_1] | Detailed discussion by the lecturer of the issues listed in the table "module description" using the table and/or multimedia presentations |
26 | Supplementary reading, working with the textbook |
44 |
zaliczenie [MB_17_w_1] |
laboratorium [MB_17_fs_2] | Computer sessions |
10 | (brak informacji) |
20 |
zaliczenie [MB_17_w_1] |
Załączniki |
---|
Opis modułu (PDF) |
Sylabusy (USOSweb) | ||
---|---|---|
Semestr | Moduł | Język wykładowy |
(brak danych) |