Mathematics Programme code: W4-S1MT19.2024

Field of study: Mathematics
Programme code: W4-S1MT19.2024
Programme code (USOS): W4-S1MT19
Faculty: Faculty of Science and Technology
Language of study: Polish
Academic year of entry: winter semester 2024/2025
Level of qualifications/degree: first-cycle studies
Mode of study: full-time
Degree profile: general academic
Number of semesters: 6
Degree: licencjat (Bachelor's Degree)
Specializations:
  • Mathematical Methods in Computer Science
  • Mathematical Modelling
  • Mathematics for Finance and Economics
  • Teacher Training Programme with Chemistry
  • Teacher Training Programme with Physics
  • Teaching Specialty - Teaching of Mathematics and Computer Science
  • Theoretical Mathematics
Semester from which the specializations starts: 2
Number of ECTS credits required to achieve the qualification equivalent to the level of study: 180
Leading discipline: mathematics (natural sciences)
ISCED code: 0541
The number and date of the Senate’s resolution: 559/2024 (25/06/2024)
General characteristics of the field of study and the assumed concept of education:
Studia pierwszego stopnia na kierunku Matematyka mają na celu wykształcenie absolwenta, który posiada gruntowną i na tyle wszechstronną wiedzę matematyczną, by mógł kontynuować naukę na studiach drugiego stopnia lub też wykonywać zawód matematyka na różnych stanowiskach pracy wykorzystujących narzędzia matematyczne w sektorze informatycznym, finansowym, handlowym lub produkcyjnym. Absolwent studiów pierwszego stopnia na kierunku Matematyka: - posiada zaawansowaną wiedzę z zakresu matematyki i jej zastosowań; - posiada umiejętność przeprowadzania rozumowań matematycznych i dokonywania złożonych obliczeń; - potrafi przedstawiać treści matematyczne w mowie i piśmie; - potrafi budować, rozwijać i wykorzystywać modele matematyczne niezbędne w zastosowaniach; - posługuje się narzędziami informatycznymi przy rozwiązywaniu teoretycznych i praktycznych problemów matematycznych; - zna język angielski na poziomie biegłości B2 Europejskiego Systemu Opisu Kształcenia Językowego i posiada umiejętność posługiwania się językiem specjalistycznym z zakresu wybranej specjalności; - posiada umiejętność samodzielnego pogłębiania wiedzy matematycznej; - jest przygotowany do podjęcia studiów drugiego stopnia. Na studiach stacjonarnych I i potem II stopnia prowadzone jest kształcenie przyszłych nauczycieli. Kształcenie to odbywa się na specjalnościach nauczycielskich przygotowujących do nauczania dwóch przedmiotów: matematyki i informatyki lub matematyki i chemii lub matematyki i fizyki. Zgodnie z właściwym rozporządzeniem Ministra Nauki i Szkolnictwa Wyższego uprawnienia do nauczania matematyki i informatyki lub matematyki i chemii lub matematyki i fizyki na wszystkich szczeblach edukacji absolwent uzyskuje dopiero po ukończeniu studiów magisterskich (studiów II stopnia).
Graduation requirements:
The condition for admission to the diploma examination is to achieve the learning outcomes provided for in the study program and to obtain a certificate of an appropriate level of language proficiency in a foreign language. The condition for graduation is to pass the diploma examination with at least a satisfactory result. A graduate receives a higher education diploma confirming obtaining the qualifications of the appropriate degree. Detailed rules for conducting the diploma examination are specified in the diploma regulations.
Information on the relationship between the studies and the university's strategy as well as the socio-economic needs that determine the conduct of studies and the compliance of learning outcomes with these needs:
Kierunek Matematyka oferuje studia pierwszego stopnia mające na celu wykształcenie absolwenta zdolnego do kontynuowania nauki na studiach drugiego stopnia we wszystkich ośrodkach w kraju i za granicą, bądź też do wykonywania zawodu matematyka w różnych gałęziach globalnej gospodarki wymagających twórczych postaw i silnie rozwijających się osobowości. Najwyższą jakość kształcenia zapewnia kadra, która dbając o wciąż wzrastające potrzeby edukacyjne, rzetelnie przekazuje studentom wypracowane w przeszłości myśli i idee matematyczne, a jednocześnie wnosi swój wkład do światowej matematyki prowadząc międzynarodowe badania naukowe wciągając w nie zdolniejszych studentów. Personalne zainteresowania studentów oraz dbałość o jakość i istotność kapitału ludzkiego są powodem szybkiej indywidualizacji programu studiów związanej z wyborem specjalności. Oferowane specjalności są dostosowywane do potrzeb rynku pracy (m.in. poprzez stały kontakt z otoczeniem społeczno-gospodarczym) i modyfikowane pod kątem innowacyjnego kształcenia. Koncepcja kształcenia na kierunku matematyka jest zgodna ze Strategią Rozwoju Uniwersytetu Śląskiego w Katowicach na lata 2020-2025. Dzięki temu połączeniu program kształcenia dostarcza studentom aktualnej wiedzy, umiejętności i kompetencji niezbędnych do sprostania wymaganiom rynku pracy oraz odpowiada na wyzwania naukowe.
Specialization: Mathematical Methods in Computer Science
General description of the specialization:
Absolwent tej specjalności posiada przygotowanie matematyczne i informatyczne pozwalające na pracę na stanowisku informatycznym, szczególnie zaś w tych obszarach, gdzie istotną rolę odgrywają narzędzia i metody matematyczne. Absolwent posiada: • umiejętność tworzenia, optymalizacji i badania złożoności obliczeniowej algorytmów rozwiązujących konkretne zagadnienia praktyczne; • umiejętność konstrukcji i implementacji oprogramowania; • umiejętność obsługi pakietów wspomagania prac inżynierskich i statystycznego przetwarzania danych. Dzięki solidnemu wykształceniu matematycznemu i umiejętnościom informatycznym absolwent jest zdolny do współpracy interdyscyplinarnej ze wszystkimi podmiotami, które w swej działalności wykorzystują matematykę oraz informatykę. Jednocześnie jest zdolny do samokształcenia i samodzielnego uzupełniania wiedzy w szybko zmieniającej się rzeczywistości.
Internships (hours and conditions):
Internships are an integral part of the study program, carried out by students in individual fields, levels, profiles and forms of study. Internships are to help in confronting the knowledge acquired during studies with the requirements of the labour market, acquiring skills useful in the profession, learning about practical issues related to working in positions for which the student is prepared during the course of studies. The internship is to familiarize the student with professional language relevant to a specific industry and work culture. The rules for the organization of internships are set out in the Rector's ordinance. Detailed rules of apprenticeship taking into account the specifics of particular fields of study are set out in the field's of study apprenticeship regulations, in particular: learning outcomes assumed to be achieved by the student during the apprenticeship, framework apprenticeship program including a description of issues, dimension of apprenticeship (number of weeks of practice); form of internship (continuous, mid-year), criteria for choosing the place of internship, obligations of the student staying in the internship, obligations of the academic tutor, conditions for completing the internship by the student and conditions for exemption from the internship obligation in whole or in part. The number of ECTS and the number of hours are specified in the course structure.
Percentage of the ECTS credits for each of the scientific or artistic disciplines to which the learning outcomes are related to the total number of ECTS credits: mathematics (natural sciences): 100%
Specialization: Mathematical Modelling
General description of the specialization:
Absolwent tej specjalności w trakcie studiów otrzymuje gruntowne wykształcenie matematyczne i informatyczne uzupełnione o zaawansowaną wiedzę w zakresie nauk przyrodniczych. Dzięki temu dysponuje pełnym aparatem metod matematycznych i informatycznych używanych we współczesnej nauce, technice i jest przygotowany do nawiązania współpracy interdyscyplinarnej z inżynierami, informatykami i biologami. Absolwent przygotowany jest do: • konstrukcji i implementacji oprogramowania kierującego procesami przemysłowymi; • statystycznego przetwarzania danych; • przygotowywania testów wdrożeniowych nowych technologii i ich statystycznego opracowywania; • optymalizacji procesów przemysłowych; • modelowania i symulacji komputerowej zjawisk przyrodniczych i procesów technologicznych.
Internships (hours and conditions):
Internships are an integral part of the study program, carried out by students in individual fields, levels, profiles and forms of study. Internships are to help in confronting the knowledge acquired during studies with the requirements of the labour market, acquiring skills useful in the profession, learning about practical issues related to working in positions for which the student is prepared during the course of studies. The internship is to familiarize the student with professional language relevant to a specific industry and work culture. The rules for the organization of internships are set out in the Rector's ordinance. Detailed rules of apprenticeship taking into account the specifics of particular fields of study are set out in the field's of study apprenticeship regulations, in particular: learning outcomes assumed to be achieved by the student during the apprenticeship, framework apprenticeship program including a description of issues, dimension of apprenticeship (number of weeks of practice); form of internship (continuous, mid-year), criteria for choosing the place of internship, obligations of the student staying in the internship, obligations of the academic tutor, conditions for completing the internship by the student and conditions for exemption from the internship obligation in whole or in part. The number of ECTS and the number of hours are specified in the course structure.
Percentage of the ECTS credits for each of the scientific or artistic disciplines to which the learning outcomes are related to the total number of ECTS credits: mathematics (natural sciences): 100%
Specialization: Mathematics for Finance and Economics
General description of the specialization:
Absolwent tej specjalności obok gruntownego przygotowania matematycznego, nabywa wiedzę interdyscyplinarną pozwalającą na twórczy udział w rozwiązywaniu problemów praktycznych i teoretycznych w finansach i ekonomii takich, jak: • problemy sterowania i optymalizacji działalności ekonomicznej; • przetwarzanie i statystyczne opracowywanie danych; • matematyczne modelowanie zjawisk ekonomicznych i finansowych; • przygotowywanie prognoz i analiz działalności ekonomicznej; • finansowej oceny projektów inwestycyjnych; • wykorzystywanie metod matematycznych na rynku kapitałowym i ubezpieczeniowym. Dzięki temu absolwent jest przygotowany do podjęcia pracy w sektorze finansowym i ubezpieczeniowym lub w handlu, bądź też w przemyśle.
Internships (hours and conditions):
Internships are an integral part of the study program, carried out by students in individual fields, levels, profiles and forms of study. Internships are to help in confronting the knowledge acquired during studies with the requirements of the labour market, acquiring skills useful in the profession, learning about practical issues related to working in positions for which the student is prepared during the course of studies. The internship is to familiarize the student with professional language relevant to a specific industry and work culture. The rules for the organization of internships are set out in the Rector's ordinance. Detailed rules of apprenticeship taking into account the specifics of particular fields of study are set out in the field's of study apprenticeship regulations, in particular: learning outcomes assumed to be achieved by the student during the apprenticeship, framework apprenticeship program including a description of issues, dimension of apprenticeship (number of weeks of practice); form of internship (continuous, mid-year), criteria for choosing the place of internship, obligations of the student staying in the internship, obligations of the academic tutor, conditions for completing the internship by the student and conditions for exemption from the internship obligation in whole or in part. The number of ECTS and the number of hours are specified in the course structure.
Percentage of the ECTS credits for each of the scientific or artistic disciplines to which the learning outcomes are related to the total number of ECTS credits: mathematics (natural sciences): 100%
Specialization: Teacher Training Programme with Chemistry
General description of the specialization:
Absolwent specjalności nauczycielska - nauczanie matematyki i chemii posiada gruntowną wiedzę matematyczną a także chemiczną niezbędną do nauczania matematyki i chemii w szkole. Po ukończeniu specjalności nauczycielskiej - nauczanie matematyki i chemii będzie pedagogiem wszechstronnie przygotowanym do kompleksowej realizacji zadań dydaktycznych i wychowawczych, który w procesie nauczania będzie potrafił wykorzystywać wiedzę pedagogiczną i psychologiczną, a także nowoczesne narzędzia multimedialne. Dobre przygotowanie merytoryczne i umiejętność korzystania z literatury i technologii informatycznych pozwoli absolwentowi dostosować swoją wiedzę i umiejętności do stale zmieniających się warunków nauczania. Zgodnie z właściwym rozporządzeniem Ministra Nauki i Szkolnictwa Wyższego dopiero po ukończeniu studiów II stopnia o tej samej specjalności absolwent otrzyma uprawnienia do nauczania matematyki i chemii na wszystkich szczeblach edukacji.
Internships (hours and conditions):
Internships are an integral part of the study program, carried out by students in individual fields, levels, profiles and forms of study. Internships are to help in confronting the knowledge acquired during studies with the requirements of the labour market, acquiring skills useful in the profession, learning about practical issues related to working in positions for which the student is prepared during the course of studies. The internship is to familiarize the student with professional language relevant to a specific industry and work culture. The rules for the organization of internships are set out in the Rector's ordinance. Detailed rules of apprenticeship taking into account the specifics of particular fields of study are set out in the field's of study apprenticeship regulations, in particular: learning outcomes assumed to be achieved by the student during the apprenticeship, framework apprenticeship program including a description of issues, dimension of apprenticeship (number of weeks of practice); form of internship (continuous, mid-year), criteria for choosing the place of internship, obligations of the student staying in the internship, obligations of the academic tutor, conditions for completing the internship by the student and conditions for exemption from the internship obligation in whole or in part. The number of ECTS and the number of hours are specified in the course structure.
Percentage of the ECTS credits for each of the scientific or artistic disciplines to which the learning outcomes are related to the total number of ECTS credits: mathematics (natural sciences): 100%
Specialization: Teacher Training Programme with Physics
General description of the specialization:
Absolwent specjalności nauczycielska - nauczanie matematyki i fizyki posiada gruntowną wiedzę matematyczną a także z zakresu fizyki niezbędną do nauczania matematyki i fizyki w szkole. Po ukończeniu specjalności nauczycielskiej - nauczanie matematyki i fizyki będzie pedagogiem wszechstronnie przygotowanym do kompleksowej realizacji zadań dydaktycznych i wychowawczych, który w procesie nauczania będzie potrafił wykorzystywać wiedzę pedagogiczną i psychologiczną, a także nowoczesne narzędzia multimedialne. Dobre przygotowanie merytoryczne i umiejętność korzystania z literatury i technologii informatycznych pozwoli absolwentowi dostosować swoją wiedzę i umiejętności do stale zmieniających się warunków nauczania. Zgodnie z właściwym rozporządzeniem Ministra Nauki i Szkolnictwa Wyższego dopiero po ukończeniu studiów II stopnia o tej samej specjalności absolwent otrzyma uprawnienia do nauczania matematyki i fizyki na wszystkich szczeblach edukacji.
Internships (hours and conditions):
Internships are an integral part of the study program, carried out by students in individual fields, levels, profiles and forms of study. Internships are to help in confronting the knowledge acquired during studies with the requirements of the labour market, acquiring skills useful in the profession, learning about practical issues related to working in positions for which the student is prepared during the course of studies. The internship is to familiarize the student with professional language relevant to a specific industry and work culture. The rules for the organization of internships are set out in the Rector's ordinance. Detailed rules of apprenticeship taking into account the specifics of particular fields of study are set out in the field's of study apprenticeship regulations, in particular: learning outcomes assumed to be achieved by the student during the apprenticeship, framework apprenticeship program including a description of issues, dimension of apprenticeship (number of weeks of practice); form of internship (continuous, mid-year), criteria for choosing the place of internship, obligations of the student staying in the internship, obligations of the academic tutor, conditions for completing the internship by the student and conditions for exemption from the internship obligation in whole or in part. The number of ECTS and the number of hours are specified in the course structure.
Percentage of the ECTS credits for each of the scientific or artistic disciplines to which the learning outcomes are related to the total number of ECTS credits: mathematics (natural sciences): 100%
Specialization: Teaching Specialty - Teaching of Mathematics and Computer Science
General description of the specialization:
Absolwent specjalności nauczycielska - nauczanie matematyki i informatyki posiada gruntowną wiedzę matematyczną a także informatyczną niezbędną do nauczania matematyki i informatyki w szkole. Po ukończeniu specjalności nauczycielskiej - nauczanie matematyki i informatyki będzie pedagogiem wszechstronnie przygotowanym do kompleksowej realizacji zadań dydaktycznych i wychowawczych, który w procesie nauczania będzie potrafił wykorzystywać wiedzę pedagogiczną i psychologiczną, a także nowoczesne narzędzia multimedialne. Dobre przygotowanie merytoryczne i umiejętność korzystania z literatury i technologii informatycznych pozwoli absolwentowi dostosować swoją wiedzę i umiejętności do stale zmieniających się warunków nauczania. Zgodnie z właściwym rozporządzeniem Ministra Nauki i Szkolnictwa Wyższego dopiero po ukończeniu studiów II stopnia o tej samej specjalności absolwent otrzyma uprawnienia do nauczania matematyki i informatyki na wszystkich szczeblach edukacji.
Internships (hours and conditions):
Internships are an integral part of the study program, carried out by students in individual fields, levels, profiles and forms of study. Internships are to help in confronting the knowledge acquired during studies with the requirements of the labour market, acquiring skills useful in the profession, learning about practical issues related to working in positions for which the student is prepared during the course of studies. The internship is to familiarize the student with professional language relevant to a specific industry and work culture. The rules for the organization of internships are set out in the Rector's ordinance. Detailed rules of apprenticeship taking into account the specifics of particular fields of study are set out in the field's of study apprenticeship regulations, in particular: learning outcomes assumed to be achieved by the student during the apprenticeship, framework apprenticeship program including a description of issues, dimension of apprenticeship (number of weeks of practice); form of internship (continuous, mid-year), criteria for choosing the place of internship, obligations of the student staying in the internship, obligations of the academic tutor, conditions for completing the internship by the student and conditions for exemption from the internship obligation in whole or in part. The number of ECTS and the number of hours are specified in the course structure.
Percentage of the ECTS credits for each of the scientific or artistic disciplines to which the learning outcomes are related to the total number of ECTS credits: mathematics (natural sciences): 100%
Specialization: Theoretical Mathematics
General description of the specialization:
Absolwent tej specjalności posiada poszerzoną wiedzę matematyczną dzięki indywidualnemu planowi i programowi studiów odbywanych pod kierunkiem tutora - opiekuna naukowego. W trakcie studiów jest przygotowywany do podjęcia nauki w Szkole Doktorskiej w zakresie dyscypliny naukowej - matematyka.
Internships (hours and conditions):
Internships are an integral part of the study program, carried out by students in individual fields, levels, profiles and forms of study. Internships are to help in confronting the knowledge acquired during studies with the requirements of the labour market, acquiring skills useful in the profession, learning about practical issues related to working in positions for which the student is prepared during the course of studies. The internship is to familiarize the student with professional language relevant to a specific industry and work culture. The rules for the organization of internships are set out in the Rector's ordinance. Detailed rules of apprenticeship taking into account the specifics of particular fields of study are set out in the field's of study apprenticeship regulations, in particular: learning outcomes assumed to be achieved by the student during the apprenticeship, framework apprenticeship program including a description of issues, dimension of apprenticeship (number of weeks of practice); form of internship (continuous, mid-year), criteria for choosing the place of internship, obligations of the student staying in the internship, obligations of the academic tutor, conditions for completing the internship by the student and conditions for exemption from the internship obligation in whole or in part. The number of ECTS and the number of hours are specified in the course structure.
Percentage of the ECTS credits for each of the scientific or artistic disciplines to which the learning outcomes are related to the total number of ECTS credits: mathematics (natural sciences): 100%
KNOWLEDGE
The graduate:
zna i rozumie w zaawansowanym stopniu cywilizacyjne znaczenie matematyki i jej zastosowań [K_W01]
rozumie budowę teorii matematycznych [K_W02]
rozumie znaczenie dowodu w matematyce, a także pojęcie istotności założeń [K_W03]
zna i rozumie pojęcia, twierdzenia, techniki dowodowe i metody opisu problemów z poznanych działów matematyki, w szczególności algebry, analizy matematycznej, logiki matematycznej, matematyki dyskretnej, rachunku prawdopodobieństwa, równań różniczkowych, statystyki, teorii mnogości i topologii [K_W04]
zna przykłady zarówno ilustrujące konkretne pojęcia matematyczne, jak i pozwalające obalić błędne hipotezy lub nieuprawnione rozumowania [K_W05]
zna wybrane techniki obliczeniowe i programowania wspomagające pracę matematyka i rozumie ich ograniczenia [K_W06]
zna co najmniej jeden pakiet oprogramowania służący do obliczeń numerycznych lub symbolicznych [K_W07]
has advanced knowledge of selected scientific or scholarly theories and methods, is familiar with the issues specific to the chosen academic discipline and understands its connection with the leading discipline of the degree programme [MOB.2023_W01]
understands the relationship between entrepreneurship-related issues and the leading discipline of the degree programme, exhibits an entrepreneurial mindset [MOB.2023_W02_P]
understands the relationship between legal issues – especially those pertaining to civil rights and obligations and their implementation – and the leading discipline of the degree programme, in particular the basic concepts and provisions pertaining to the protection of industrial protection and copyright law [MOB.2023_W03_VP]
has advanced knowledge of selected scientific theories and methods and is familiar with the issues specific to the selected academic discipline in the context of other disciplines [OMU.2023_W01]

SKILLS
The graduate:
posługując się formalizmem matematycznym potrafi w sposób zrozumiały, w mowie i piśmie, przedstawić poprawne rozumowania matematyczne, formułować twierdzenia i definicje oraz budować i analizować wybrane modele matematyczne [K_U01]
potrafi posługiwać się językiem teorii mnogości, rachunkiem zdań, kwantyfikatorów oraz potrafi stosować system logiki klasycznej do opisu i formalizacji zagadnień z różnych obszarów matematyki [K_U02]
potrafi operować pojęciami i metodami analizy matematycznej ze szczególnym uwzględnieniem rachunku różniczkowego i całkowego funkcji jednej i wielu zmiennych, w poznanych działach matematyki lub w innych dziedzinach nauki, w tym w zagadnieniach związanych z optymalizacją [K_U03]
potrafi operować pojęciami i metodami algebry, w tym algebry liniowej, w poznanych działach matematyki lub innych dziedzin nauki [K_U04]
potrafi rozwiązywać podstawowe równania różniczkowe oraz stosować je w różnych działach matematyki lub w innych dziedzinach nauki [K_U05]
potrafi posługiwać się obiektami i własnościami topologicznymi oraz stosować je w różnych działach matematyki [K_U06]
potrafi wykorzystać narzędzia informatyczne w rozwiązywaniu problemów matematycznych lub w zagadnieniach z innych dziedzin nauki [K_U07]
potrafi samodzielnie lub w zespole zaprojektować i zaimplementować algorytm realizujący wybrane zadanie programistyczne [K_U08]
rozpoznaje problemy, w tym zagadnienia praktyczne, które można rozwiązywać algorytmicznie; potrafi dokonać specyfikacji takiego problemu [K_U09]
potrafi posługiwać się obiektami i własnościami oraz stosować klasyczne wyniki z zakresu matematyki dyskretnej [K_U10]
potrafi operować pojęciami i twierdzeniami rachunku prawdopodobieństwa oraz stosować je w różnych działach matematyki lub w innych dziedzinach nauki [K_U11]
potrafi stosować metody statystyki w różnych dziedzinach nauki [K_U12]
potrafi zrozumiałym językiem mówić o zagadnieniach matematycznych i przedstawić na piśmie opracowania zagadnień matematycznych, a także potrafi podjąć merytoryczną debatę na temat matematyki wyższej – przedstawiać i oceniać różne opinie i stanowiska oraz dyskutować o nich [K_U13]
potrafi praktycznie wykorzystać posiadaną wiedzę matematyczną w opisie i rozwiązywaniu problemów związanych z przyszłą aktywnością zawodową [K_U14]
potrafi planować i organizować pracę indywidualną i zespołową, rozumie sens i znaczenie współdziałania w ramach projektów matematycznych oraz interdyscyplinarnych [K_U15]
potrafi samodzielnie pogłębiać wiedzę i rozwijać umiejętności nabyte na studiach oraz projektować swoją dalszą ścieżkę kształcenia i dążyć do jej realizacji [K_U16]
clearly and comprehensibly communicates with others in a foreign language at the B2 level of the Common European Framework of Reference for Languages, making use of his/her knowledge and terminology [KJ.2023_U]
asks questions, analyzes research problems and finds solutions to them based on the knowledge, skills and experience he/she has gained within the chosen academic discipline in conjunction with the leading discipline of the degree programme; communicates the results of his/her work in a way which is clear and understandable not only to specialists [MOB.2023_U01]
has advanced skills in asking research questions, analyzing problems or providing practical solutions to them based on the knowledge, experience and skills gained within the chosen academic discipline in the context of other disciplines [OMU.2023_U01]

SOCIAL COMPETENCES
The graduate:
zna ograniczenia własnej wiedzy, umiejętności i rozumie potrzebę dalszego doskonalenia własnych kompetencji, poszerzania wiedzy z wykorzystaniem różnych źródeł informacji [K_K01]
rozumie konieczność systematycznej pracy nad wszelkimi projektami, w szczególności tymi o charakterze długofalowym, a zarazem potrafi myśleć w kategoriach przedsiębiorczości i działać w sposób przedsiębiorczy [K_K02]
rozumie znaczenie wiedzy matematycznej w rozwiązywaniu typowych problemów pojawiających się w miejscach pracy właściwych dla absolwentów kierunku matematyka [K_K03]
jest gotowy do pełnienia, w sposób odpowiedzialny, ról zawodowych wymagających kompetencji zdobywanych w ramach studiów matematycznych, w szczególności przestrzegania uwarunkowań prawnych i norm etycznych, rozumienia znaczenia uczciwości intelektualnej w działaniach własnych i innych [K_K04]
rozumie potrzebę interdyscyplinarnego podejścia do rozwiązywanych problemów, integrowania wiedzy z różnych dyscyplin i zasięgania opinii ekspertów [K_K05]
is ready to meet social obligations, co-organize activities for the benefit of the community and is open to scientific solutions to cognitive and practical problems [MOB.2023_K01]
acknowledges and makes use of knowledge from different disciplines and is ready to change opinion in the light of scientifically proven arguments [OMU.2023_K01]
KNOWLEDGE
The graduate:
zna pojęcia z zakresu chemii i nauk pokrewnych i wiąże tą wiedzę z budową, właściwościami, reaktywnością pierwiastków i związków chemicznych, a także z jakościową i ilościową interpretacją zjawisk zachodzących w przyrodzie [KN_Ch_W01]
ma zaawansowaną wiedzę w zakresie chemii organicznej oraz nieorganicznej [KN_Ch_W02]
zna techniki eksperymentu chemicznego oraz stosowany sprzęt laboratoryjny [KN_Ch_W03]
zna właściwości, sposoby przemysłowego otrzymywania i analizy wybranych produktów chemicznych oraz zasady racjonalnego zarządzania chemikaliami zgodnie z przepisami BHP [KN_Ch_W04]
has a knowledge of operating systems and computer architecture [KN_I_W01]
knows the methods of network communication and the rules of network security [KN_I_W02]
is familiar with the concept of algorithm and the principles of designing and analysing the algorithm [KN_I_W03]
has a knowledge of computer and robot programming [KN_I_W04]
has a knowledge of computer graphics and multimedia [KN_I_W05]
has a knowledge of IT techniques, text processing, spreadsheet use and website designing [KN_I_W06]
has an orderly knowledge of the acquisition, processing and organisation of information [KN_I_W07]
knows ways of representing information in a computer and positional numeral systems [KN_I_W08]
has a knowledge of legal and ethical issues related to IT [KN_I_W09]
knows principles of health and safety when using computer equipment [KN_I_W10]
knows and understands the rudiments of the philosophy of education and pedagogical axiology, the peculiarities of the main educational environments and the processes taking place in them [KN.2023_W01]
knows and understands classical and contemporary theories of human development, upbringing, learning and teaching or education as well as their application values [KN.2023_W02]
knows and understands the role of the teacher or tutor in modeling the students’ attitudes and behavior [KN.2023_W03]
knows and understands standards, procedures and good practices used in pedagogical activities (pre-school education, teaching in primary and secondary schools, in technical and vocational schools, in special needs schools and in special needs and inclusive facilities, in various types of educational centres and lifelong learning centres [KN.2023_W04]
knows and understands the issue of inclusive education as well as ways of implementing the principle of inclusion [KN.2023_W05]
knows and understands the diversity of students' educational needs and the resulting school's obligations to adapt the way the education and upbringing process is organized [KN.2023_W06]
knows and understands methods of designing and conducting diagnostic activities in pedagogical practice [KN.2023_W07]
knows and understands the structure and functions of the education system – objectives, legal basis, organization and functioning of different kinds of educational and child care institutions, as well as alternative forms of education [KN.2023_W08]
knows and understands the legal basis of the education system necessary for the proper implementation of educational activities [KN.2023_W09]
knows and understands the rights of the child and the person with disabilities [KN.2023_W10]
knows and understands the principles of occupational health and safety in educational, upbringing and care institutions and the legal responsibility of the teacher in this/her respect, as well as the principles of first aid [KN.2023_W11]
knows and understands interpersonal and social communication processes, the normal course they can take as well as the ways they can be disrupted [KN.2023_W12]
knows and understands the speech apparatus, its functions and pathologies, the principles of voice emission, the visual and the vestibular systems [KN.2023_W13]
knows and understands learning content and typical learning difficulties it poses for students [KN.2023_W14]
knows and understands teaching methods and the selection of effective teaching aids, including Internet resources which support teaching a subject or conducting classes, taking into account the diverse educational needs of the students [KN.2023_W15]

SKILLS
The graduate:
potrafi interpretować i rozwiązywać problemy z zakresu chemii i nauk pokrewnych w oparciu o poznane pojęcia i prawa, krytycznie analizować uzyskane wyniki, wyciągać i przedstawiać stosowne wnioski [KN_Ch_U01]
potrafi zsyntetyzować różnego rodzaju związki chemiczne, oraz określić skład jakościowy i ilościowy prostych związków chemicznych [KN_Ch_U02]
potrafi przewidywać właściwości związków chemicznych oraz interpretować mechanizmy reakcji [KN_Ch_U03]
potrafi zastosować narzędzia informacyjno-komunikacyjne oraz elektroniczne zasoby edukacyjne do wspomagania procesu dydaktyki chemii [KN_Ch_U04]
potrafi zastosować poznane metody matematyczne i statystyczne do rozwiązywania problemów z zakresu chemii a także oceny wiarygodności danych eksperymentalnych i wizualizacji wyników [KN_Ch_U05]
potrafi przygotować prace pisemne (sprawozdania, raporty, opracowania) i prezentacje ustne dotyczące zagadnień z dziedziny chemii [KN_Ch_U06]
na podstawie specjalistycznej literatury i informacji z baz danych samodzielnie poznaje wybrane zagadnienia i określa kierunki dalszego kształcenia oraz pojmuje konieczność stosowania interdyscyplinarnego podejścia opartego na krytycznym wnioskowaniu przy rozwiązywaniu problemów badawczych [KN_Ch_U07]
jest odpowiedzialny za pracę indywidualną i zespołową planując ją w sposób racjonalny i zgodny z przepisami BHP i zasadami dobrej praktyki laboratoryjnej [KN_Ch_U08]
realizuje ideę samokształcenia służącego pogłębianiu zdobytej wiedzy, niezbędnej do rozwiązywania problemów praktycznych i poznawczych [KN_Ch_U09]
can explain how a computer works, administer computers with Windows operating systems, counter threats that could destroy the effects of computer work and can perform the basic system diagnostics, and administer a simple local computer network, providing security [KN_I_U01]
can use virtual environments (cloud) [KN_I_U02]
can independently design algorithms that perform selected tasks, can perform an analysis of the complexity of a given algorithm [KN_I_U03]
can write a program in the selected programming language [KN_I_U04]
can write a program for a built robot [KN_I_U05]
can create and modify graphic objects and multimedia files using selected graphics and multimedia programs [KN_I_U06]
can prepare an extensive multimedia presentation in the selected program for creating presentations [KN_I_U07]
can process and organize data using the selected Office programs [KN_I_U08]
can solve problems using basic applications [KN_I_U09]
can create a simple website [KN_I_U10]
can cooperate in a group and organize the group's work during the implementation of joint IT projects [KN_I_U11]
applies the principles of health and safety at work in a computer laboratory [KN_I_U12]
is able to observe pedagogical situations and events, to analyze them using pedagogical and psychological knowledge and to propose solutions to problems [KN.2023_U01]
is able to adequately select, create and adapt materials and means to the diverse needs of the students, including in the field of information and communication technology, as well as methods for independent design and effective implementation of pedagogical, didactic, educational and child care activities [KN.2023_U02]
is able to recognize the needs, abilities and talents of students and to design and conduct activities promoting the integral development of students, their activity and participation in the process of education and upbringing, and in social life [KN.2023_U03]
is able to design and implement curricula taking into account the diverse educational needs of the students [KN.2023_U04]
is able to design and implement educational-preventive programs concerning the content and educational as well as preventive activities directed at students, their parents or guardians and teachers [KN.2023_U05]
is able to create training situations motivating students to study and to work on themselves, to analyze their effectiveness and modify activities so as to achieve the desired educational effects [KN.2023_U06]
is able to undertake work with students that stimulates their interests and develops their talents, to properly select teaching content, tasks and forms of work as part of self-education, also to promote students' achievements [KN.2023_U07]
is able to develop in students creativity and the ability of independent, critical thinking [KN.2023_U08]
is able to effectively stimulate and monitor students’ teamwork involving educational projects [KN.2023_U09]
is able to use the process of assessment and feedback in order to stimulate students in their work on their own development [KN.2023_U10]
is able to monitor students’ progress, their activity and participation in the social life of the school [KN.2023_U11]
is able to work with children with special educational needs, including children with adaptation difficulties related to their migration experience, who come from culturally diverse backgrounds or with limited knowledge of the Polish language [KN.2023_U12]
is able to responsibly organize the students' school and extracurricular work, respecting his/her right to rest [KN.2023_U13]
is able to effectively implement activities supporting students in making informed and responsible educational and professional decisions [KN.2023_U14]
is able to use the Polish language correctly; to use subject-related terminology correctly and adequately to the age of the students [KN.2023_U15]
is able to use the speech apparatus in accordance with the principles of voice emission [KN.2023_U16]
is able to provide first aid [KN.2023_U17]
is able to develop knowledge and pedagogical skills on one’s own, using various sources, including sources in foreign languages, as well as technology [KN.2023_U18]

SOCIAL COMPETENCES
The graduate:
krytycznie ocenia zasób posiadanej wiedzy, rozumie potrzebę interdyscyplinarnego podejścia do rozwiązywanych problemów z uwzględnieniem opinii ekspertów w przypadku trudności w samodzielnym ich rozwiązaniu [KN_Ch_K01]
rozumie i przestrzega zasad etyki zawodowej i własności intelektualnej [KN_Ch_K02]
understands the need to comply with ethical and legal principles related to activity in the IT environment (e.g. the use of copyrights and licenses) [KN_I_K01]
understands the need for continuous education and self-education [KN_I_K02]
is ready to use universal principles and ethical standards in professional activity, guided by respect for every human being [KN.2023_KS01]
is ready to build a relation based on mutual trust between all participants of the upbringing and education process, including the student's parents or guardians, and involving them in activities conducive to educational effectiveness [KN.2023_KS02]
is ready to communicate with people from different backgrounds, exhibiting diverse emotional states, resolving conflicts through dialogue, creating an atmosphere conducive to communication in and outside the classroom [KN.2023_KS03]
is ready to make decisions related to the way the educational process is organized in inclusive education [KN.2023_KS04]
is ready to recognize the peculiarity of the local community and to engage in cooperation for the benefit of the students and the community [KN.2023_KS05]
is ready to design activities supporting the developing of the school or the educational institution and stimulating the improvement of the quality of work of these institutions [KN.2023_KS06]
is ready to work in a team, performing various roles in it and cooperating with teachers, tutors, specialists, students’ parents or guardians as well as other members of the school and local community [KN.2023_KS07]
KNOWLEDGE
The graduate:
zna pojęcia z zakresu fizyki i nauk pokrewnych i potrafi zastosować tę wiedzę do rozwiązywania problemów naukowych [KN_NDP_F_W01]
zna i rozumie podstawowe teorie, prawa i wzory z fizyki i astronomii [KN_NDP_F_W02]
zna przykłady poznanych praw fizyki w otaczającej rzeczywistości oraz wyjaśnia ich rolę [KN_NDP_F_W03]
zna podstawowe techniki planowania, przygotowania i przeprowadzania prostych eksperymentów fizycznych oraz zasadę działania i wykorzystanie aparatury pomiarowej [KN_NDP_F_W04]
zna podstawowe zasady bezpieczeństwa i higieny pracy w laboratorium fizycznym [KN_NDP_F_W05]
zna formalizm matematyczny przydatny do rozwiązywania zadań z fizyki [KN_NDP_F_W06]
rozumie wielostronną rolę i znaczenie doświadczeń w nauczaniu fizyki [KN_NDP_F_W07]

SKILLS
The graduate:
potrafi w sposób zrozumiały, w mowie i piśmie przedstawić podstawowe teorie fizyczne i twierdzenia [KN_NDP_F_U01]
umie wyjaśnić na gruncie praw fizyki podstawowe procesy fizyczne zachodzące w otaczającym go świecie [KN_NDP_F_U02]
potrafi przeprowadzać i analizować różnego typu pomiary i eksperymenty fizyczne [KN_NDP_F_U03]
potrafi zastosować poznane metody matematyczne, statystyczne oraz typowe oprogramowanie użytkowe do rozwiązywania problemów z zakresu fizyki, a także oceny wiarygodności danych eksperymentalnych i wizualizacji wyników [KN_NDP_F_U04]
potrafi przygotować opracowanie zawierające analizę i dyskusję otrzymanych wyników eksperymentalnych [KN_NDP_F_U05]
potrafi pozyskiwać informacje z literatury i innych źródeł; potrafi integrować pozyskane informacje i dokonywać ich interpretacji, wyciągać wnioski oraz formułować i uzasadniać opinie [KN_NDP_F_U06]
posiada umiejętność przygotowania i przedstawienia prezentacji ustnej stosując nowoczesne techniki multimedialne [KN_NDP_F_U07]
zna proste sposoby demonstracji zjawisk fizycznych, dysponuje doświadczalnym warsztatem dydaktycznym przyszłego nauczyciela [KN_NDP_F_U08]

SOCIAL COMPETENCES
The graduate:
rozumie potrzebę ciągłego dokształcenia się oraz samokształcenia [KN_NDP_F_K01]
krytycznie ocenia zasób posiadanej wiedzy, rozumie potrzebę interdyscyplinarnego podejścia do rozwiązywanych problemów z uwzględnieniem opinii ekspertów w przypadku trudności w samodzielnym ich rozwiązaniu [KN_NDP_F_K02]
rozumie i przestrzega zasad etyki zawodowej i własności intelektualnej [KN_NDP_F_K03]
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Elementary algebra I [W4-MT-S1-24-WzAlg1] Polish course work discussion classes: 30 2
Elementary analysis I [W4-MT-S1-24-WzAna1] Polish course work discussion classes: 30 2
Elements of Programming [W4-MT-S1-24-EProg] Polish course work laboratory classes: 45 3
Elements of school logic [W4-MT-S1-24-WzLog] Polish course work discussion classes: 30 2
Introduction to Algebra and Number Theory [W4-MT-S1-24-WATL] Polish course work lecture: 30
discussion classes: 30
5
Introduction to Mathematical Analysis [W4-MT-S1-24-WAMa] Polish exam lecture: 60
discussion classes: 60
11
Introduction to Mathematics [W4-MT-S1-24-WMat] Polish exam lecture: 30
discussion classes: 30
5
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Elementary algebra I [W4-MT-S1-24-WzAlg1] Polish course work discussion classes: 30 2
Elementary analysis I [W4-MT-S1-24-WzAna1] Polish course work discussion classes: 30 2
Elements of Programming [W4-MT-S1-24-EProg] Polish course work laboratory classes: 45 3
Elements of school logic [W4-MT-S1-24-WzLog] Polish course work discussion classes: 30 2
Introduction to Algebra and Number Theory [W4-MT-S1-24-WATL] Polish course work lecture: 30
discussion classes: 30
5
Introduction to Mathematical Analysis [W4-MT-S1-24-WAMa] Polish exam lecture: 60
discussion classes: 60
11
Introduction to Mathematics [W4-MT-S1-24-WMat] Polish exam lecture: 30
discussion classes: 30
5
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Elementary algebra I [W4-MT-S1-24-WzAlg1] Polish course work discussion classes: 30 2
Elementary analysis I [W4-MT-S1-24-WzAna1] Polish course work discussion classes: 30 2
Elements of Programming [W4-MT-S1-24-EProg] Polish course work laboratory classes: 45 3
Elements of school logic [W4-MT-S1-24-WzLog] Polish course work discussion classes: 30 2
Introduction to Algebra and Number Theory [W4-MT-S1-24-WATL] Polish course work lecture: 30
discussion classes: 30
5
Introduction to Mathematical Analysis [W4-MT-S1-24-WAMa] Polish exam lecture: 60
discussion classes: 60
11
Introduction to Mathematics [W4-MT-S1-24-WMat] Polish exam lecture: 30
discussion classes: 30
5
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Elementary algebra I [W4-MT-S1-24-WzAlg1] Polish course work discussion classes: 30 2
Elementary analysis I [W4-MT-S1-24-WzAna1] Polish course work discussion classes: 30 2
Elements of Programming [W4-MT-S1-24-EProg] Polish course work laboratory classes: 45 3
Elements of school logic [W4-MT-S1-24-WzLog] Polish course work discussion classes: 30 2
Introduction to Algebra and Number Theory [W4-MT-S1-24-WATL] Polish course work lecture: 30
discussion classes: 30
5
Introduction to Mathematical Analysis [W4-MT-S1-24-WAMa] Polish exam lecture: 60
discussion classes: 60
11
Introduction to Mathematics [W4-MT-S1-24-WMat] Polish exam lecture: 30
discussion classes: 30
5
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Elementary algebra I [W4-MT-S1-24-WzAlg1] Polish course work discussion classes: 30 2
Elementary analysis I [W4-MT-S1-24-WzAna1] Polish course work discussion classes: 30 2
Elements of Programming [W4-MT-S1-24-EProg] Polish course work laboratory classes: 45 3
Elements of school logic [W4-MT-S1-24-WzLog] Polish course work discussion classes: 30 2
Introduction to Algebra and Number Theory [W4-MT-S1-24-WATL] Polish course work lecture: 30
discussion classes: 30
5
Introduction to Mathematical Analysis [W4-MT-S1-24-WAMa] Polish exam lecture: 60
discussion classes: 60
11
Introduction to Mathematics [W4-MT-S1-24-WMat] Polish exam lecture: 30
discussion classes: 30
5
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Elementary algebra I [W4-MT-S1-24-WzAlg1] Polish course work discussion classes: 30 2
Elementary analysis I [W4-MT-S1-24-WzAna1] Polish course work discussion classes: 30 2
Elements of Programming [W4-MT-S1-24-EProg] Polish course work laboratory classes: 45 3
Elements of school logic [W4-MT-S1-24-WzLog] Polish course work discussion classes: 30 2
Introduction to Algebra and Number Theory [W4-MT-S1-24-WATL] Polish course work lecture: 30
discussion classes: 30
5
Introduction to Mathematical Analysis [W4-MT-S1-24-WAMa] Polish exam lecture: 60
discussion classes: 60
11
Introduction to Mathematics [W4-MT-S1-24-WMat] Polish exam lecture: 30
discussion classes: 30
5
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Elementary algebra I [W4-MT-S1-24-WzAlg1] Polish course work discussion classes: 30 2
Elementary analysis I [W4-MT-S1-24-WzAna1] Polish course work discussion classes: 30 2
Elements of Programming [W4-MT-S1-24-EProg] Polish course work laboratory classes: 45 3
Elements of school logic [W4-MT-S1-24-WzLog] Polish course work discussion classes: 30 2
Introduction to Algebra and Number Theory [W4-MT-S1-24-WATL] Polish course work lecture: 30
discussion classes: 30
5
Introduction to Mathematical Analysis [W4-MT-S1-24-WAMa] Polish exam lecture: 60
discussion classes: 60
11
Introduction to Mathematics [W4-MT-S1-24-WMat] Polish exam lecture: 30
discussion classes: 30
5
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Elementary algebra II [W4-MT-S1-24-WzAlg2] Polish course work discussion classes: 15 1
Elementary analysis II [W4-MT-S1-24-WzAna2] Polish course work discussion classes: 15 1
Elements of Discrete Mathematics A [W4-MT-S1-24-EMDyA] Polish exam lecture: 15
discussion classes: 15
3
Linear Algebra A [W4-MT-S1-24-ALinA] Polish exam lecture: 30
discussion classes: 30
5
Mathematical Analysis I A [W4-MT-S1-24-AMa1A] Polish exam lecture: 60
discussion classes: 60
11
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 1 [LJA-2023-01] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Elementary algebra II [W4-MT-S1-24-WzAlg2] Polish course work discussion classes: 15 1
Elementary analysis II [W4-MT-S1-24-WzAna2] Polish course work discussion classes: 15 1
Elements of Discrete Mathematics A [W4-MT-S1-24-EMDyA] Polish exam lecture: 15
discussion classes: 15
3
Linear Algebra A [W4-MT-S1-24-ALinA] Polish exam lecture: 30
discussion classes: 30
5
Mathematical Analysis I A [W4-MT-S1-24-AMa1A] Polish exam lecture: 60
discussion classes: 60
11
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 1 [LJA-2023-01] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Elementary algebra II [W4-MT-S1-24-WzAlg2] Polish course work discussion classes: 15 1
Elementary analysis II [W4-MT-S1-24-WzAna2] Polish course work discussion classes: 15 1
Elements of Discrete Mathematics A [W4-MT-S1-24-EMDyA] Polish exam lecture: 15
discussion classes: 15
3
Linear Algebra A [W4-MT-S1-24-ALinA] Polish exam lecture: 30
discussion classes: 30
5
Mathematical Analysis I A [W4-MT-S1-24-AMa1A] Polish exam lecture: 60
discussion classes: 60
11
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 1 [LJA-2023-01] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Combinatorics [W4-MT-S1-24-KRPr] Polish course work lecture: 15
discussion classes: 15
3
Elementary algebra II [W4-MT-S1-24-WzAlg2] Polish course work discussion classes: 15 1
Elementary analysis II [W4-MT-S1-24-WzAna2] Polish course work discussion classes: 15 1
Linear Algebra [W4-MT-S1-24-ALin] Polish exam lecture: 30
discussion classes: 30
5
Mathematical Analysis I [W4-MT-S1-24-AMa1] Polish exam lecture: 60
discussion classes: 60
10
Modules preparing for the teaching profession (organised at the university level)
Kształcenie Nauczycielskie: Pedagogika 1 [KN-2023-SS-ZIN-PE1] Polish course work lecture: 15
practical classes: 30
3
Kształcenie Nauczycielskie: Psychologia 1 [KN-2023-SS-ZIN-PS1] Polish course work lecture: 15
practical classes: 30
3
Modules preparing for the teaching profession (organized at the programme level)
Interactive board [W4-MT-S1-24-TMul] Polish course work workshop: 15 1
Open access modules
English language course 1 [LJA-2023-01] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Combinatorics [W4-MT-S1-24-KRPr] Polish course work lecture: 15
discussion classes: 15
3
Elementary algebra II [W4-MT-S1-24-WzAlg2] Polish course work discussion classes: 15 1
Elementary analysis II [W4-MT-S1-24-WzAna2] Polish course work discussion classes: 15 1
Linear Algebra [W4-MT-S1-24-ALin] Polish exam lecture: 30
discussion classes: 30
5
Mathematical Analysis I [W4-MT-S1-24-AMa1] Polish exam lecture: 60
discussion classes: 60
10
Modules preparing for the teaching profession (organised at the university level)
Kształcenie Nauczycielskie: Pedagogika 1 [KN-2023-SS-ZIN-PE1] Polish course work lecture: 15
practical classes: 30
3
Kształcenie Nauczycielskie: Psychologia 1 [KN-2023-SS-ZIN-PS1] Polish course work lecture: 15
practical classes: 30
3
Modules preparing for the teaching profession (organized at the programme level)
Interactive board [W4-MT-S1-24-TMul] Polish course work workshop: 15 1
Open access modules
English language course 1 [LJA-2023-01] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Combinatorics [W4-MT-S1-24-KRPr] Polish course work lecture: 15
discussion classes: 15
3
Elementary algebra II [W4-MT-S1-24-WzAlg2] Polish course work discussion classes: 15 1
Elementary analysis II [W4-MT-S1-24-WzAna2] Polish course work discussion classes: 15 1
Linear Algebra [W4-MT-S1-24-ALin] Polish exam lecture: 30
discussion classes: 30
5
Mathematical Analysis I [W4-MT-S1-24-AMa1] Polish exam lecture: 60
discussion classes: 60
10
Modules preparing for the teaching profession (organised at the university level)
Kształcenie Nauczycielskie: Pedagogika 1 [KN-2023-SS-ZIN-PE1] Polish course work lecture: 15
practical classes: 30
3
Kształcenie Nauczycielskie: Psychologia 1 [KN-2023-SS-ZIN-PS1] Polish course work lecture: 15
practical classes: 30
3
Modules preparing for the teaching profession (organized at the programme level)
Interactive board [W4-MT-S1-24-TMul] Polish course work workshop: 15 1
Open access modules
English language course 1 [LJA-2023-01] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Elementary algebra II [W4-MT-S1-24-WzAlg2] Polish course work discussion classes: 15 1
Elementary analysis II [W4-MT-S1-24-WzAna2] Polish course work discussion classes: 15 1
Elements of Discrete Mathematics A [W4-MT-S1-24-EMDyA] Polish exam lecture: 15
discussion classes: 15
3
Linear Algebra A [W4-MT-S1-24-ALinA] Polish exam lecture: 30
discussion classes: 30
5
Mathematical Analysis I A [W4-MT-S1-24-AMa1A] Polish exam lecture: 60
discussion classes: 60
11
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 1 [LJA-2023-01] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Computer tools for mathematics [W4-MT-S1-24-INM] Polish course work laboratory classes: 30 2
Geometry A [W4-MT-S1-24-GeoA] Polish exam lecture: 30
discussion classes: 30
5
Mathematical Analysis II A [W4-MT-S1-24-AMa2A] Polish exam lecture: 60
discussion classes: 60
laboratory classes: 15
12
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 2 [LJA-2023-02] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Computer tools for mathematics [W4-MT-S1-24-INM] Polish course work laboratory classes: 30 2
Geometry A [W4-MT-S1-24-GeoA] Polish exam lecture: 30
discussion classes: 30
5
Mathematical Analysis II A [W4-MT-S1-24-AMa2A] Polish exam lecture: 60
discussion classes: 60
laboratory classes: 15
12
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 2 [LJA-2023-02] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Computer tools for mathematics [W4-MT-S1-24-INM] Polish course work laboratory classes: 30 2
Geometry A [W4-MT-S1-24-GeoA] Polish exam lecture: 30
discussion classes: 30
5
Mathematical Analysis II A [W4-MT-S1-24-AMa2A] Polish exam lecture: 60
discussion classes: 60
laboratory classes: 15
12
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 2 [LJA-2023-02] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Editing mathematical texts [W4-MT-S1-24-ETMat] Polish course work laboratory classes: 15 1
Mathematical Analysis II [W4-MT-S1-24-AMa2] Polish exam lecture: 60
discussion classes: 60
10
School geometry [W4-MT-S1-24-GSzk] Polish course work lecture: 15
discussion classes: 15
2
Modules preparing for the teaching profession (organised at the university level)
Kształcenie Nauczycielskie: Podstawy dydaktyki [KN-2023-SS-ZIN-PD] Polish course work lecture: 15
discussion classes: 15
2
Kształcenie Nauczycielskie: Praktyka zawodowa psychologiczno-pedagogiczna [KN-2023-SS-ZIN-PZPP] Polish course work internship: 30 2
Kształcenie Nauczycielskie: Warsztaty pedagogiczne 1 [KN-2023-SS-ZIN-WPE1] Polish course work workshop: 15 1
Kształcenie Nauczycielskie: Warsztaty psychologiczne 1 [KN-2023-SS-ZIN-WPS1] Polish course work workshop: 15 1
Modules preparing for the teaching profession (organized at the programme level)
GeoGebra [W4-MT-S1-24-GeoG] Polish course work laboratory classes: 15 1
Preparation for Work in Primary School [W4-MT-S1-24-PPSTut] Polish course work workshop: 30 2
Moduły przygotowujące merytorycznie do nauczania drugiego przedmiotu
General Chemistry I [W4-MT-S1-24-PCh1] Polish course work laboratory classes: 30
workshop: 30
3
Organic Chemistry I [W4-MT-S1-24-ChO1] Polish course work laboratory classes: 15
workshop: 20
2
Open access modules
English language course 2 [LJA-2023-02] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Editing mathematical texts [W4-MT-S1-24-ETMat] Polish course work laboratory classes: 15 1
Mathematical Analysis II [W4-MT-S1-24-AMa2] Polish exam lecture: 60
discussion classes: 60
10
School geometry [W4-MT-S1-24-GSzk] Polish course work lecture: 15
discussion classes: 15
2
Modules preparing for the teaching profession (organised at the university level)
Kształcenie Nauczycielskie: Podstawy dydaktyki [KN-2023-SS-ZIN-PD] Polish course work lecture: 15
discussion classes: 15
2
Kształcenie Nauczycielskie: Praktyka zawodowa psychologiczno-pedagogiczna [KN-2023-SS-ZIN-PZPP] Polish course work internship: 30 2
Kształcenie Nauczycielskie: Warsztaty pedagogiczne 1 [KN-2023-SS-ZIN-WPE1] Polish course work workshop: 15 1
Kształcenie Nauczycielskie: Warsztaty psychologiczne 1 [KN-2023-SS-ZIN-WPS1] Polish course work workshop: 15 1
Modules preparing for the teaching profession (organized at the programme level)
GeoGebra [W4-MT-S1-24-GeoG] Polish course work laboratory classes: 15 1
Preparation for Work in Primary School [W4-MT-S1-24-PPSTut] Polish course work workshop: 30 2
Moduły przygotowujące merytorycznie do nauczania drugiego przedmiotu
Fundamentals of Physics II - Electricity and Magnetism [KN-F-PF2-EM] Polish course work workshop: 40 2
Fundamentals of Physics I - Mechanics [KN-F-PF1-M] Polish course work workshop: 45 3
Open access modules
English language course 2 [LJA-2023-02] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Editing mathematical texts [W4-MT-S1-24-ETMat] Polish course work laboratory classes: 15 1
Mathematical Analysis II [W4-MT-S1-24-AMa2] Polish exam lecture: 60
discussion classes: 60
10
School geometry [W4-MT-S1-24-GSzk] Polish course work lecture: 15
discussion classes: 15
2
Modules preparing for the teaching profession (organised at the university level)
Kształcenie Nauczycielskie: Podstawy dydaktyki [KN-2023-SS-ZIN-PD] Polish course work lecture: 15
discussion classes: 15
2
Kształcenie Nauczycielskie: Praktyka zawodowa psychologiczno-pedagogiczna [KN-2023-SS-ZIN-PZPP] Polish course work internship: 30 2
Kształcenie Nauczycielskie: Warsztaty pedagogiczne 1 [KN-2023-SS-ZIN-WPE1] Polish course work workshop: 15 1
Kształcenie Nauczycielskie: Warsztaty psychologiczne 1 [KN-2023-SS-ZIN-WPS1] Polish course work workshop: 15 1
Modules preparing for the teaching profession (organized at the programme level)
GeoGebra [W4-MT-S1-24-GeoG] Polish course work laboratory classes: 15 1
Preparation for Work in Primary School [W4-MT-S1-24-PPSTut] Polish course work workshop: 30 2
Moduły przygotowujące merytorycznie do nauczania drugiego przedmiotu
IT at school [W4-MT-S1-24-ISzk] Polish course work laboratory classes: 45 3
Multimedia [W4-MT-S1-24-Mul] Polish course work laboratory classes: 30 2
Open access modules
English language course 2 [LJA-2023-02] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Computer tools for mathematics [W4-MT-S1-24-INM] Polish course work laboratory classes: 30 2
Geometry A [W4-MT-S1-24-GeoA] Polish exam lecture: 30
discussion classes: 30
5
Mathematical Analysis II A [W4-MT-S1-24-AMa2A] Polish exam lecture: 60
discussion classes: 60
laboratory classes: 15
12
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 2 [LJA-2023-02] English course work language classes: 30 3
Physical education [WF-2023] course work practical classes: 30 0
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Algebra A [W4-MT-S1-24-AlgA] Polish exam lecture: 30
discussion classes: 30
5
Elementary probability theory I [W4-MT-S1-24-WzRPr1] Polish course work discussion classes: 30 2
Introduction to Computational Mathematics A [W4-MT-S1-24-WMObA] Polish exam lecture: 30
laboratory classes: 30
5
Introduction to Differential Equations A [W4-MT-S1-24-WRRoA] Polish exam lecture: 30
discussion classes: 30
5
Introduction to Probability Theory A [W4-MT-S1-24-WRPrA] Polish exam lecture: 30
discussion classes: 30
5
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Open access modules
English language course 3 [LJA-2023-03] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Algebra A [W4-MT-S1-24-AlgA] Polish exam lecture: 30
discussion classes: 30
5
Elementary probability theory I [W4-MT-S1-24-WzRPr1] Polish course work discussion classes: 30 2
Introduction to Computational Mathematics A [W4-MT-S1-24-WMObA] Polish exam lecture: 30
laboratory classes: 30
5
Introduction to Differential Equations A [W4-MT-S1-24-WRRoA] Polish exam lecture: 30
discussion classes: 30
5
Introduction to Probability Theory A [W4-MT-S1-24-WRPrA] Polish exam lecture: 30
discussion classes: 30
5
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Open access modules
English language course 3 [LJA-2023-03] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Algebra A [W4-MT-S1-24-AlgA] Polish exam lecture: 30
discussion classes: 30
5
Elementary probability theory I [W4-MT-S1-24-WzRPr1] Polish course work discussion classes: 30 2
Introduction to Computational Mathematics A [W4-MT-S1-24-WMObA] Polish exam lecture: 30
laboratory classes: 30
5
Introduction to Differential Equations A [W4-MT-S1-24-WRRoA] Polish exam lecture: 30
discussion classes: 30
5
Introduction to Probability Theory A [W4-MT-S1-24-WRPrA] Polish exam lecture: 30
discussion classes: 30
5
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Open access modules
English language course 3 [LJA-2023-03] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Introduction to Differential Equations [W4-MT-S1-24-WRRo] Polish exam lecture: 30
discussion classes: 30
5
Modules preparing for the teaching profession (organised at the university level)
Kształcenie Nauczycielskie: Emisja głosu [KN-2023-SS-ZIN-EG] Polish course work practical classes: 30 2
Kształcenie Nauczycielskie: Pierwsza pomoc przedmedyczna [KN-2023-SS-ZIN-PPP] Polish course work practical classes: 15 1
Modules preparing for the teaching profession (organized at the programme level)
Assessment and diagnosis in primary education [W4-MT-S1-24-OiDwSP] Polish course work discussion classes: 15 1
Didactics of Chemistry I [W4-MT-S1-24-DCh1] Polish course work lecture: 30
workshop: 15
3
Didactics of Mathematics I [W4-MT-S1-24-DMat1] Polish course work discussion classes: 30 2
Education Practicium from Mathematics in Primary School I [W4-MT-S1-24-PNMa1] Polish course work workshop: 60 3
Teaching methodology I [W4-MT-S1-24-MSzk1] Polish course work workshop: 30 2
Moduły przygotowujące merytorycznie do nauczania drugiego przedmiotu
General Chemistry II [W4-MT-S1-24-PCh2] Polish course work laboratory classes: 15
workshop: 15
2
ICT in chemistry teaching [W4-MT-S1-24-TIKCh] Polish course work workshop: 20 1
Inorganic Chemistry [W4-MT-S1-24-ChN1] Polish course work lecture: 15
workshop: 15
2
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 3 [LJA-2023-03] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Introduction to Differential Equations [W4-MT-S1-24-WRRo] Polish exam lecture: 30
discussion classes: 30
5
Modules preparing for the teaching profession (organised at the university level)
Kształcenie Nauczycielskie: Emisja głosu [KN-2023-SS-ZIN-EG] Polish course work practical classes: 30 2
Kształcenie Nauczycielskie: Pierwsza pomoc przedmedyczna [KN-2023-SS-ZIN-PPP] Polish course work practical classes: 15 1
Modules preparing for the teaching profession (organized at the programme level)
Assessment and diagnosis in primary education [W4-MT-S1-24-OiDwSP] Polish course work discussion classes: 15 1
Didactics of Mathematics I [W4-MT-S1-24-DMat1] Polish course work discussion classes: 30 2
Education Practicium from Mathematics in Primary School I [W4-MT-S1-24-PNMa1] Polish course work workshop: 60 3
Physics didactics I [KN-F-DF1] Polish course work laboratory classes: 30
workshop: 15
3
Teaching methodology I [W4-MT-S1-24-MSzk1] Polish course work workshop: 30 2
Moduły przygotowujące merytorycznie do nauczania drugiego przedmiotu
Fundamentals of Physics III - Thermodynamics [KN-F-PF3-T] Polish course work workshop: 30 2
ICT in physics teaching [KN-F-TIK] Polish course work workshop: 15 1
Physics lab I, part 1 [KN-F-PrF-CZ1] Polish course work laboratory classes: 20 1
Statistical methods of results processing [KN-F-SMOW] Polish course work workshop: 15 1
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 3 [LJA-2023-03] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Introduction to Differential Equations [W4-MT-S1-24-WRRo] Polish exam lecture: 30
discussion classes: 30
5
Modules preparing for the teaching profession (organised at the university level)
Kształcenie Nauczycielskie: Emisja głosu [KN-2023-SS-ZIN-EG] Polish course work practical classes: 30 2
Kształcenie Nauczycielskie: Pierwsza pomoc przedmedyczna [KN-2023-SS-ZIN-PPP] Polish course work practical classes: 15 1
Modules preparing for the teaching profession (organized at the programme level)
Assessment and diagnosis in primary education [W4-MT-S1-24-OiDwSP] Polish course work discussion classes: 15 1
Didactics of Computer Science I [W4-MT-S1-24-DInf1] Polish course work lecture: 30
workshop: 15
3
Didactics of Mathematics I [W4-MT-S1-24-DMat1] Polish course work discussion classes: 30 2
Education Practicium from Mathematics in Primary School I [W4-MT-S1-24-PNMa1] Polish course work workshop: 60 3
Teaching methodology I [W4-MT-S1-24-MSzk1] Polish course work workshop: 30 2
Moduły przygotowujące merytorycznie do nauczania drugiego przedmiotu
Algorithms and Programming [W4-MT-S1-24-AiP] Polish exam lecture: 25
discussion classes: 15
laboratory classes: 20
5
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 3 [LJA-2023-03] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Algebra A [W4-MT-S1-24-AlgA] Polish exam lecture: 30
discussion classes: 30
5
Elementary probability theory I [W4-MT-S1-24-WzRPr1] Polish course work discussion classes: 30 2
Introduction to Computational Mathematics A [W4-MT-S1-24-WMObA] Polish exam lecture: 30
laboratory classes: 30
5
Introduction to Differential Equations A [W4-MT-S1-24-WRRoA] Polish exam lecture: 30
discussion classes: 30
5
Introduction to Probability Theory A [W4-MT-S1-24-WRPrA] Polish exam lecture: 30
discussion classes: 30
5
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Open access modules
English language course 3 [LJA-2023-03] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Editing mathematical texts [W4-MT-S1-24-ETMat] Polish course work laboratory classes: 15 1
Elementary probability theory II [W4-MT-S1-24-WzRPr2] Polish course work discussion classes: 15 1
Elements of Statistics [W4-MT-S1-24-ESt] Polish exam lecture: 30
laboratory classes: 30
5
Probability Theory A [W4-MT-S1-24-RPraA] Polish exam lecture: 30
discussion classes: 30
5
Proseminar [W4-MT-S1-24-Pro] Polish course work proseminar: 15 1
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Specialized Workshops [W4-MT-S1-24-WSpe] Polish course work laboratory classes: 45 3
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Module in the "Digital World" area [MO-2023-SS-CS] course work depending on the choice: 30 3
Open access modules
English language course 4 [LJA-2023-04] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Editing mathematical texts [W4-MT-S1-24-ETMat] Polish course work laboratory classes: 15 1
Elementary probability theory II [W4-MT-S1-24-WzRPr2] Polish course work discussion classes: 15 1
Elements of Statistics [W4-MT-S1-24-ESt] Polish exam lecture: 30
laboratory classes: 30
5
Probability Theory A [W4-MT-S1-24-RPraA] Polish exam lecture: 30
discussion classes: 30
5
Proseminar [W4-MT-S1-24-Pro] Polish course work proseminar: 15 1
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Specialized Workshops [W4-MT-S1-24-WSpe] Polish course work laboratory classes: 45 3
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Module in the "Digital World" area [MO-2023-SS-CS] course work depending on the choice: 30 3
Open access modules
English language course 4 [LJA-2023-04] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Editing mathematical texts [W4-MT-S1-24-ETMat] Polish course work laboratory classes: 15 1
Elementary probability theory II [W4-MT-S1-24-WzRPr2] Polish course work discussion classes: 15 1
Elements of Statistics [W4-MT-S1-24-ESt] Polish exam lecture: 30
laboratory classes: 30
5
Probability Theory A [W4-MT-S1-24-RPraA] Polish exam lecture: 30
discussion classes: 30
5
Proseminar [W4-MT-S1-24-Pro] Polish course work proseminar: 15 1
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Specialized Workshops [W4-MT-S1-24-WSpe] Polish course work laboratory classes: 45 3
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Module in the "Digital World" area [MO-2023-SS-CS] course work depending on the choice: 30 3
Open access modules
English language course 4 [LJA-2023-04] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Algebra [W4-MT-S1-24-Alg] Polish exam lecture: 30
discussion classes: 30
5
Elementary probability theory [W4-MT-S1-24-WzRPr] Polish course work discussion classes: 15 1
Probability Theory [W4-MT-S1-24-RPra] Polish exam lecture: 30
discussion classes: 15
4
Proseminar [W4-MT-S1-24-Pro] Polish course work proseminar: 15 1
Modules preparing for the teaching profession (organized at the programme level)
Didactics of Chemistry II [W4-MT-S1-24-DCh2] Polish course work workshop: 15 1
Didactics of Mathematics II [W4-MT-S1-24-DMat2] Polish course work discussion classes: 30 2
Education Practicium from Chemistry in Primary School, Tutoring I [W4-MT-S1-24-PNCh1] Polish course work workshop: 30
tutoring: 2
2
Education Practicium from Mathematics in Primary School II [W4-MT-S1-24-PNMa2] Polish course work workshop: 60 3
Language Culture [W4-MT-S1-24-KJez] Polish course work practical classes: 30 3
Teaching methodology II [W4-MT-S2-24-MSzk2] Polish course work workshop: 30 2
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 4 [LJA-2023-04] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Algebra [W4-MT-S1-24-Alg] Polish exam lecture: 30
discussion classes: 30
5
Elementary probability theory [W4-MT-S1-24-WzRPr] Polish course work discussion classes: 15 1
Probability Theory [W4-MT-S1-24-RPra] Polish exam lecture: 30
discussion classes: 15
4
Proseminar [W4-MT-S1-24-Pro] Polish course work proseminar: 15 1
Modules preparing for the teaching profession (organized at the programme level)
Didactics of Mathematics II [W4-MT-S1-24-DMat2] Polish course work discussion classes: 30 2
Education Practicium from Mathematics in Primary School II [W4-MT-S1-24-PNMa2] Polish course work workshop: 60 3
Education Practicium from Physics in Primary School, Tutoring I [KN-F-PNF1-TUT] Polish course work workshop: 30
tutoring: 2
2
Language Culture [W4-MT-S1-24-KJez] Polish course work practical classes: 30 3
Physics didactics II [KN-F-DF2] Polish course work laboratory classes: 15 1
Teaching methodology II [W4-MT-S2-24-MSzk2] Polish course work workshop: 30 2
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 4 [LJA-2023-04] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Algebra [W4-MT-S1-24-Alg] Polish exam lecture: 30
discussion classes: 30
5
Elementary probability theory [W4-MT-S1-24-WzRPr] Polish course work discussion classes: 15 1
Probability Theory [W4-MT-S1-24-RPra] Polish exam lecture: 30
discussion classes: 15
4
Proseminar [W4-MT-S1-24-Pro] Polish course work proseminar: 15 1
Modules preparing for the teaching profession (organized at the programme level)
Didactics of Computer Science II [W4-MT-S1-24-DInf2] Polish course work workshop: 15 1
Didactics of Mathematics II [W4-MT-S1-24-DMat2] Polish course work discussion classes: 30 2
Education Practicium from Computer Science in Primary School, Tutoring I [W4-MT-S1-24-PNInf1] Polish course work workshop: 30
tutoring: 2
2
Education Practicium from Mathematics in Primary School II [W4-MT-S1-24-PNMa2] Polish course work workshop: 60 3
Language Culture [W4-MT-S1-24-KJez] Polish course work practical classes: 30 3
Teaching methodology II [W4-MT-S2-24-MSzk2] Polish course work workshop: 30 2
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Open access modules
English language course 4 [LJA-2023-04] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Editing mathematical texts [W4-MT-S1-24-ETMat] Polish course work laboratory classes: 15 1
Elementary probability theory II [W4-MT-S1-24-WzRPr2] Polish course work discussion classes: 15 1
Elements of Statistics [W4-MT-S1-24-ESt] Polish exam lecture: 30
laboratory classes: 30
5
Probability Theory A [W4-MT-S1-24-RPraA] Polish exam lecture: 30
discussion classes: 30
5
Proseminar [W4-MT-S1-24-Pro] Polish course work proseminar: 15 1
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Specialized Workshops [W4-MT-S1-24-WSpe] Polish course work laboratory classes: 45 3
Programme co-related modules
Group of programme co-related modules: lecture: 0
depending on the choice: 30
3
Module in the "Digital World" area [MO-2023-SS-CS] course work depending on the choice: 30 3
Open access modules
English language course 4 [LJA-2023-04] English course work language classes: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Diploma Seminar [W4-MT-S1-24-SDyp] Polish course work seminar: 30 4
English for mathematics [W4-MT-S1-24-EMat] English course work discussion classes: 15 1
Monograph Course [W4-MT-S1-24-WMJAng] English exam lecture: 30
discussion classes: 30
5
Topology A [W4-MT-S1-24-TopA] Polish exam lecture: 30
discussion classes: 30
5
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Team Project [W4-MT-S1-24-PZes] Polish course work laboratory classes: 30 2
Open access modules
Open University Module [OMU-2023-SS-01-OG] course work depending on the choice: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Diploma Seminar [W4-MT-S1-24-SDyp] Polish course work seminar: 30 4
English for mathematics [W4-MT-S1-24-EMat] English course work discussion classes: 15 1
Monograph Course [W4-MT-S1-24-WMJAng] English exam lecture: 30
discussion classes: 30
5
Topology A [W4-MT-S1-24-TopA] Polish exam lecture: 30
discussion classes: 30
5
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Team Project [W4-MT-S1-24-PZes] Polish course work laboratory classes: 30 2
Open access modules
Open University Module [OMU-2023-SS-01-OG] course work depending on the choice: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Diploma Seminar [W4-MT-S1-24-SDyp] Polish course work seminar: 30 4
English for mathematics [W4-MT-S1-24-EMat] English course work discussion classes: 15 1
Monograph Course [W4-MT-S1-24-WMJAng] English exam lecture: 30
discussion classes: 30
5
Topology A [W4-MT-S1-24-TopA] Polish exam lecture: 30
discussion classes: 30
5
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Team Project [W4-MT-S1-24-PZes] Polish course work laboratory classes: 30 2
Open access modules
Open University Module [OMU-2023-SS-01-OG] course work depending on the choice: 30 3
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Diploma Seminar [W4-MT-S1-24-SDyp] Polish course work seminar: 30 4
Elements of General Topology [W4-MT-S1-24-ETop] Polish exam lecture: 15
discussion classes: 30
4
English for mathematics [W4-MT-S1-24-EMat] English course work discussion classes: 15 1
Introduction to statistics [W4-MT-S1-24-PSta] Polish exam lecture: 30
laboratory classes: 30
5
Modules preparing for the teaching profession (organized at the programme level)
Didactics of Mathematics III [W4-MT-S1-24-DMat3] Polish course work discussion classes: 30 2
Education Practicium from Chemistry in Primary School, Tutoring II [W4-MT-S1-24-PNCh2] Polish course work workshop: 30
tutoring: 1
2
Moduły przygotowujące merytorycznie do nauczania drugiego przedmiotu
Inorganic Chemistry II [W4-MT-S1-24-ChN2] Polish course work workshop: 30 2
Organic Chemistry II [W4-MT-S1-24-ChO2] Polish exam lecture: 15
laboratory classes: 15
workshop: 20
4
Open access modules
Open University Module [OMU-2023-SS-01-OG] course work depending on the choice: 30 3
Internship
Continuous Education Practicium from Chemistry in Primary School [W4-MT-S1-24-PNCCh] Polish course work internship: 15 1
Continuous Education Practicium from Mathematics in Primary School [W4-MT-S1-24-PNCMat] Polish course work internship: 40 2
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Diploma Seminar [W4-MT-S1-24-SDyp] Polish course work seminar: 30 4
Elements of General Topology [W4-MT-S1-24-ETop] Polish exam lecture: 15
discussion classes: 30
4
English for mathematics [W4-MT-S1-24-EMat] English course work discussion classes: 15 1
Introduction to statistics [W4-MT-S1-24-PSta] Polish exam lecture: 30
laboratory classes: 30
5
Modules preparing for the teaching profession (organized at the programme level)
Didactics of Mathematics III [W4-MT-S1-24-DMat3] Polish course work discussion classes: 30 2
Education Practicium from Physics in Primary School, Tutoring II [KN-F-PNF2-TUT] Polish course work workshop: 30
tutoring: 1
2
Moduły przygotowujące merytorycznie do nauczania drugiego przedmiotu
Elements of the Structure of matter [KN-F-EBM] Polish course work workshop: 20 1
Fundamentals of Physics IV - Waves and Optics [KN-F-PF4-FO] Polish course work workshop: 45 3
Physics lab I, part 2 [KN-F-PrF-CZ2] Polish course work laboratory classes: 30 2
Open access modules
Open University Module [OMU-2023-SS-01-OG] course work depending on the choice: 30 3
Internship
Continuous Education Practicium from Mathematics in Primary School [W4-MT-S1-24-PNCMat] Polish course work internship: 40 2
Continuous Education Practicium from Physics in Primary School [KN-F-PCF] Polish course work internship: 15 1
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Diploma Seminar [W4-MT-S1-24-SDyp] Polish course work seminar: 30 4
Elements of General Topology [W4-MT-S1-24-ETop] Polish exam lecture: 15
discussion classes: 30
4
English for mathematics [W4-MT-S1-24-EMat] English course work discussion classes: 15 1
Introduction to statistics [W4-MT-S1-24-PSta] Polish exam lecture: 30
laboratory classes: 30
5
Modules preparing for the teaching profession (organized at the programme level)
Didactics of Mathematics III [W4-MT-S1-24-DMat3] Polish course work discussion classes: 30 2
Education Practicium from Computer Science in Primary School, Tutoring II [W4-MT-S1-24-PNInf2] Polish course work workshop: 30
tutoring: 1
2
Moduły przygotowujące merytorycznie do nauczania drugiego przedmiotu
Advanced Programming [W4-MT-S1-24-PZaw] Polish course work laboratory classes: 45 3
Introduction to Operating Systems [W4-MT-S1-24-WSOp] Polish course work laboratory classes: 15 1
Robotics [W4-MT-S1-24-Rob] Polish course work laboratory classes: 30 2
Open access modules
Open University Module [OMU-2023-SS-01-OG] course work depending on the choice: 30 3
Internship
Continuous Education Practicium from Computer Science in Primary School [W4-MT-S1-24-PNCInf] Polish course work internship: 15 1
Continuous Education Practicium from Mathematics in Primary School [W4-MT-S1-24-PNCMat] Polish course work internship: 40 2
Module Language of instruction Form of verification Number of hours ECTS credits
Programme modules
Diploma Seminar [W4-MT-S1-24-SDyp] Polish course work seminar: 30 4
English for mathematics [W4-MT-S1-24-EMat] English course work discussion classes: 15 1
Monograph Course [W4-MT-S1-24-WMJAng] English exam lecture: 30
discussion classes: 30
5
Topology A [W4-MT-S1-24-TopA] Polish exam lecture: 30
discussion classes: 30
5
Moduły specjalnościowe
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Specialized Module [W4-MT-S1-24-MSpe] Polish exam lecture: 30
laboratory classes: 30
5
Team Project [W4-MT-S1-24-PZes] Polish course work laboratory classes: 30 2
Open access modules
Open University Module [OMU-2023-SS-01-OG] course work depending on the choice: 30 3