Biomedical Engineering Programme code: 08-S2IB15.2016

Field of study: Biomedical Engineering
Programme code: 08-S2IB15.2016
Programme code (USOS): 08-S2IB15
Faculty: Faculty of Science and Technology
Language of study: Polish
Academic year of entry: summer semester 2016/2017
Level of qualifications/degree: second-cycle studies (in engineering)
Mode of study: full-time
Degree profile: general academic
Number of semesters: 3
Degree: magister inżynier (Master's Degree with engineering competencies)
Access to further studies: the possibility of applying for post graduate and doctoral studies
Specializations:
  • Imaging and Modeling of Materials for Biomedical Applications
  • Medical informatics
  • Simulation and Modeling of Biomedical Systems
Semester from which the specializations starts: (no information given)
Areas, fields and disciplines of art or science to which the programme is assigned:
  • technical studies
    • technology - 100%
      • biocybernetics and biomedical engineering
ISCED code: 0719
The number and date of the Senate’s resolution: 522 (15/12/2015)
General description of the programme:
Kierunek studiów inżynieria biomedyczna (Biomedical Engineering, BME) wchodzi w skład nauk dotyczących bioinżynierii. Główne zagadnienia jakie obejmuje, to: bioinformatyka, informatyka medyczna, obrazowanie medyczne, telemedycyna, przetwarzanie obrazów, procesowanie sygnałów fizjologicznych, biomechanika, biomateriały, analiza systemowa, modelowanie 3D i optyka biomedyczna.
Organization of the process of obtaining a degree:
1. Student studiów drugiego stopnia wybiera promotora pracy dyplomowej (magisterskiej) na początku pierwszego semestru nauki. 2. Student przygotowuje pracę dyplomową (magisterską) zgodnie z „Regulaminem przygotowania pracy dyplomowej na kierunku inżynieria biomedyczna”. 3. Egzamin dyplomowy (magisterski) składany jest przed komisją powoływaną przez Instytut Informatyki Wydziału Informatyki i Nauki o Materiałach, składającą się z przewodniczącego i dwóch członków (promotor pracy, recenzent pracy). 4. Warunkiem dopuszczenia do obrony pracy dyplomowej i egzaminu dyplomowego jest: a. uzyskanie wymaganych efektów kształcenia, w tym uzyskanie zaliczeń i zdanie egzaminów ze wszystkich modułów oraz uzyskanie wymaganej liczby punktów ECTS przewidzianych w planie studiów i programie kształcenia w całym toku kształcenia dla kierunku inżynieria biomedyczna II stopnia; b. złożenie, do zaliczenia ostatniego semestru, indeksu wraz z kompletnymi wpisami; c. złożenie egzemplarzy pracy dyplomowej oraz innych dokumentów (podanie, zdjęcia, itp.) zgodnie z aktualnymi wymogami składania prac na Wydziale Informatyki i Nauki o Materiałach; d. otrzymanie pozytywnych ocen z dwóch recenzji pracy dyplomowej (promotora pracy i recenzenta).
Connection between the field of study and university development strategy, including the university mission:
Studia II stopnia na kierunku Inżynieria biomedyczna stanowi znaczący wkład do osiągnięcia celu strategicznego nr 2 (Innowacyjne kształcenie i nowoczesna oferta dydaktyczna i naukowa na światowym poziomie) oraz nr 3 (Aktywne współdziałanie Uczelni z otoczeniem), które zawarto w dokumencie „Strategia Rozwoju Uniwersytetu Śląskiego w Katowicach na lata 2012-2020”. Zgodnie z niniejszym dokumentem priorytetowym zadaniem Uczelni w obszarze nowoczesnego kształcenia jest powoływanie nowych, interdyscyplinarnych programów studiów międzywydziałowych i międzyuczelnianych oraz prowadzonych wspólnie z otoczeniem społeczno-gospodarczym Uniwersytetu. Zadaniem Uczelni jest zapewnienie studentom wszechstronnego wykształcenia i niezaniedbywanie przy tym wiedzy oraz umiejętności specjalistycznych właściwych poszczególnym kierunkom studiów. Zgodność ze strategią nadrzędną w automatyczny sposób wypełnia strategię Wydziału, a w szczególności cel doskonalenia prowadzonych na Wydziale kierunków studiów. Utworzenie studiów II stopnia mieści się w ramach tego działania, jako kontynuacja kształcenia ze studiów I stopnia.
Specialization: Imaging and Modeling of Materials for Biomedical Applications
General description of the specialization:
(no information given)
Internships (hours and conditions):
(no information given)
Graduation requirements:
(no information given)
Number of ECTS credits required to achieve the qualification equivalent to the level of study: 90
Professional qualifications:
(no information given)
Percentage of the ECTS credits for each of the areas to which the learning outcomes are related to the total number of ECTS credits: (no information given)
Specialization: Medical informatics
General description of the specialization:
Specjalność informatyka medyczna kształci specjalistów z zakresu szeroko pojętej informatyki medycznej, która zajmuję się między innymi: systemami medycyny obrazowej, medycznymi bazami danych, dedykowanymi systemami diagnostyki medycznej, specjalistycznym oprogramowaniem, komputerowymi sieciami szpitalnymi oraz telemedycyną i wieloma innymi działami informatyki, wspomagającymi nowoczesną medycynę. Pod koniec pierwszego semestru studiów student wybiera specjalizację, w ramach której będzie się kształcił na 2 i 3 semestrze studiów.
Internships (hours and conditions):
nie dotyczy
Graduation requirements:
Warunki wymagane do ukończenia studiów na kierunku inżynieria biomedyczna to: 1. Uzyskanie wymaganych efektów kształcenia, w tym uzyskanie zaliczeń i zdanie egzaminów ze wszystkich modułów oraz uzyskanie wymaganej liczby punktów ECTS przewidzianych w planie studiów i programie kształcenia w całym toku kształcenia. 2. Pozytywna obrona pracy dyplomowej przed komisją egzaminacyjną. Ukończenie studiów na kierunku inżynieria biomedyczna jest poświadczone dyplomem ukończenia studiów.
Number of ECTS credits required to achieve the qualification equivalent to the level of study: 90
Professional qualifications:
nie dotyczy
Percentage of the ECTS credits for each of the areas to which the learning outcomes are related to the total number of ECTS credits: technical studies : 100%
Specialization: Simulation and Modeling of Biomedical Systems
General description of the specialization:
(no information given)
Internships (hours and conditions):
(no information given)
Graduation requirements:
(no information given)
Number of ECTS credits required to achieve the qualification equivalent to the level of study: 90
Professional qualifications:
(no information given)
Percentage of the ECTS credits for each of the areas to which the learning outcomes are related to the total number of ECTS credits: (no information given)
KNOWLEDGE
The graduate:
has extended knowledge of physical and chemical phenomena and their mathematical and numerical models in the field of applications of mechanics, signal analysis, computer science and biomechanical system modeling in biomedical engineering [W01]
has extended knowledge of mathematical methods used for solving and modelling engineering problems in the field of biomedical engineering, including matrix, differential, integral and algorithmic descriptions [W02]
has in-depth knowledge of computer science, materials science, biology and medicine in terms of their application in biomedical engineering and medical diagnostics [W03]
has detailed knowledge of modelling in biomedical engineering in the field of experimental methods, simulations and numerical calculations as well as information systems in medicine [W04]
has detailed knowledge of manufacturing systems in biomedical engineering regarding innovative production techniques and technologies, metrology and reconstruction engineering issues [W05]
has structured and theoretically founded knowledge of modeling supporting the design of technical devices, both in the area of modeling structural elements and the theory of constitutive equations of hard and soft tissues and biological fluids [W06]
has well-organized knowledge of modern information and telemetry systems in medicine, integration of medical systems and networks, remote medical data acquisition systems and methods of automatic diagnostics [W07]
knows standard and modern statistical methods used in medicine, issues of creating and managing databases in health care [W08]
knows and understands the basic concepts and principles in the field of protection of industrial property and copyright as well as the need to manage intellectual property resources; can use patent information resources [W16]
knows the general principles of creating and developing forms of individual entrepreneurship using knowledge in the field of biomedical engineering [W17]

SKILLS
The graduate:
is able to acquire information from the subject literature to solve complex engineering problems in the field of biomedical engineering and related sciences, both in Polish and English; can draw conclusions from the resources of information gathered in various sources, compare it and formulate critical and reasoned opinions in both speech and writing [U01]
can use the basic forms of engineering communication in biomedical engineering in both Polish and English; can use a mathematical description with symbols appropriate to the subject matter; knows how to prepare the technical specification of the structure with the use of CAD and numerical methods, in particular FEM [U02]
is able to prepare, both in Polish and English, information on the problem being solved, prepare a report presenting the results of his/her own scientific research, documented with appropriate literature footnotes, in both written and oral form [U03]
can prepare and make an oral presentation in Polish and English in the field of biomedical engineering [U04]
can determine the direction of engineering and scientific research, find the relevant literature and use it, as well as acquire knowledge in the field set by the teacher as part of self-study [U05]
is able to interact in technical English language using specialized vocabulary in the field of biomedical engineering to present a brief and simple justification or explanation of a given engineering problem [U06]
skilfully and in an advanced way: uses a computer connected to the Internet; efficiently uses it in everyday life and in the process of education and self-study, uses application software, prepares materials and multimedia presentations; creatively uses information technology to search, gather and process information and to communicate; uses the systems of: computer graphics, digital image processing, modelling of vector computer graphics objects [U07]
is able to map, measure structural elements and select technological processes using computer-aided design and production methods; knows how to use CAD, CAM and FEM programs [U08]
can use data, charts, tables, other sources of technical information, and ready-made engineering programs for data analysis, measurement and design [U09]
is able to apply knowledge acquired or taken from various sources when analysing a technical problem, not only in the field of biomedical engineering, but also related sciences, i.e. materials engineering, computer science, biology and medicine, taking into account non-technical aspects [U14]
can put forward a hypothesis related to the construction of a technical device or a technological process in medical engineering, and then can develop and implement a simple research program to verify it [U16]
is able to evaluate the possibilities of experimental or theoretical verification of research hypotheses put forward in the field of biomedical engineering [U17]
has the ability to assess the possibility of using new achievements of technology in biomedical engineering and their usefulness in solving a given technical problem [U18]
is prepared to work in the broadly understood health care industry, applying the principles of work safety, ergonomics and health management [U19]
can propose improvements to existing technical solutions [U22]

SOCIAL COMPETENCES
The graduate:
is aware of the very rapid development of technology as a field of knowledge both in terms of theoretical methods and new solutions, inventions and can inspire his/her team to search for the latest solutions in the literature of the subject indicating the sources of information [K01]
is able to work in a team as a team member, group leader, person inspiring others to search for new solutions and is aware of responsibility for his/her own work and ready to comply with the principles of working in a team and to take responsibility for jointly realized tasks [K03]
can set strategic and operational goals, and related priorities for the implementation of tasks, both formulated by others and identified by himself/herself, adequately determining priorities for the implementation of defined tasks, behaving in a professional manner, observing the rules of professional ethics, respecting the dignity of patients during medical procedures, respecting the diversity of views and cultures as well as legal provisions in medicine and biomedical engineering [K04]
is able to identify and adequately solve ethical dilemmas related to contact with employees, team-mates and subordinates, as well as external dilemmas related to the effects that his/her professional activity can have on the lives of other people [K05]
is aware of the role of a master of science in society, in particular, related to promoting modern technical solutions, their impact on the improvement of people's quality of life and the quality and competitiveness of their work; can formulate and present opinions in a manner understandable to technically uneducated people; is able to translate his/her knowledge into the language of electronic media as well as other mass media, presenting important engineering problems, paying attention to all important elements, arguing for and against the analysed solutions [K07]
KNOWLEDGE
The graduate:
has detailed theoretical knowledge of the most important problems of biomedical materials engineering in the field of biomaterials and tissue research methods and the basics of tissue and genetic engineering [W09]
has knowledge of the perspectives and trends in the field of computer modelling and simulation in engineering and clinical biomechanics, testing methods for biomaterials and tissues, basics of biotechnology and genetic engineering, design of IT and telemetry system applications in medicine, applications of electronics in medicine and modern manufacturing technologies and systems [W10]
has basic knowledge of telecommunication, telecommunication systems and networks as well as devices included in ICT networks, including wireless networks, and configuration parameters necessary for the operation and maintenance of local area network infrastructure [W11]
knows basic design methods, graphic recording methods and methods of engineering calculations and simulations of phenomena in the field of modeling biological structures and implants cooperating with them [W12]
knows modern simulation and computational programs in the field of biomedical engineering [W13]
has the knowledge necessary to understand social, economic, legal, ethical and other non-technical conditions of engineering activities [W14]
has basic knowledge of management, including quality management and running a business [W15]

SKILLS
The graduate:
is able to plan a program of experimental research and conduct an experiment in the field of biomedical engineering and draw conclusions based on the results of his/her own research and the results of research available in the literature [U10]
is able to develop a simple program or use an available computer simulation program to implement issues in the field of biomedical engineering and to interpret data obtained through computer simulation [U11]
is able to develop a mathematical model of physical phenomena occurring in basic engineering problems of biomechanics and human dynamics, biological fluid mechanics, heat and mass exchange in bioengineering and can solve the related engineering problems in these fields using analytical computational tools and computer simulations of real processes [U12]
can apply experimental methods to solve problems in the field of biomedical engineering, perform measurements, carry out statistical analysis and significance analysis in the field of engineering measurements, carry out load analysis of anatomical elements of the human musculoskeletal system, design models of medical devices, including implants and artificial organs, as well as carry out their biomechanical testing in terms of functionality [U13]
is able to assess a wider technical problem and its implications, not only in relation to technology, but also, to a certain extent, in relation to basic medical sciences concerning the protection of health, work environment or natural environment [U15]
is able to make initial economic analysis of the developed technical project in the field of biomedical engineering [U20]
can make critical analysis of the way technical solutions (devices, objects, systems, processes and services of biomedical engineering) work and evaluate them [U21]
can specify project assumptions and then formulate the specification of complex biomedical engineering tasks, including the unusual ones, taking into account their non-technical aspects [U23]
can assess the usefulness of methods and tools for solving engineering tasks typical of biomedical engineering, as well as creatively solve complex engineering tasks, including unusual ones and those containing a research component [U24]
can - according to a given specification - design and implement a complex device, object, system or process used in biomedical engineering using the appropriate and available methods, techniques and tools, and developing new tools [U25]

SOCIAL COMPETENCES
The graduate:
is aware of the impact of technology on the surrounding world, including the environment, human relations and security, and the related responsibility for the decisions made [K02]
is capable of creating new ideas and concepts in the scope of his/her profession, and able to perceive the needs of innovation and improvement of ideas [K06]
Module Language of instruction Form of verification Number of hours ECTS credits
Treści podstawowe
Inżynieria tkankowa i genetyczna [08-IBIM-S2-ITiG] Polish course work lecture: 15
laboratory classes: 30
3
Mathematical modeling in medicine [08-IBIM-S2-MMiM] English course work lecture: 15
laboratory classes: 30
3
Treści kierunkowe z inżynierii biomedycznej
Inżynieria odwrotna w modelowaniu inżynierskim [08-IBIM-S2-IOwMI] Polish course work lecture: 15
laboratory classes: 15
2
Inżynieria rehabilitacji ruchowej [08-IBIM-S2-IRR] Polish course work lecture: 15
laboratory classes: 15
2
Metody badań biomateriałów i tkanek [08-IBIM-S2-MBBiT] Polish exam lecture: 30
laboratory classes: 30
5
Modelowanie struktur i procesów biologicznych [08-IBIM-S2-MSiPB] Polish exam lecture: 30
laboratory classes: 30
5
Treści specjalności z informatyki
Systemy informatyczne w medycynie [08-IBIM-S2-SIwM] Polish exam lecture: 15
laboratory classes: 30
4
Telematyka medyczna [08-IBIM-S2-TM] Polish exam lecture: 15
laboratory classes: 30
4
Treści specjalizacji: Obrazowanie i modelowanie materiałów do zastosowań biomedycznych
Seminarium magisterskie 1 [08-IBIM-S2-SM1] Polish course work seminar: 15 2
Module Language of instruction Form of verification Number of hours ECTS credits
(no information given)
Module Language of instruction Form of verification Number of hours ECTS credits
Treści podstawowe
Inżynieria tkankowa i genetyczna [08-IBIM-S2-ITiG] Polish course work lecture: 15
laboratory classes: 30
3
Mathematical modeling in medicine [08-IBIM-S2-MMiM] English course work lecture: 15
laboratory classes: 30
3
Treści kierunkowe z inżynierii biomedycznej
Inżynieria odwrotna w modelowaniu inżynierskim [08-IBIM-S2-IOwMI] Polish course work lecture: 15
laboratory classes: 15
2
Inżynieria rehabilitacji ruchowej [08-IBIM-S2-IRR] Polish course work lecture: 15
laboratory classes: 15
2
Metody badań biomateriałów i tkanek [08-IBIM-S2-MBBiT] Polish exam lecture: 30
laboratory classes: 30
5
Modelowanie struktur i procesów biologicznych [08-IBIM-S2-MSiPB] Polish exam lecture: 30
laboratory classes: 30
5
Treści specjalności z informatyki
Systemy informatyczne w medycynie [08-IBIM-S2-SIwM] Polish exam lecture: 15
laboratory classes: 30
4
Telematyka medyczna [08-IBIM-S2-TM] Polish exam lecture: 15
laboratory classes: 30
4
Treści specjalizacji: Symulacja i modelowanie systemów biomedycznych
Seminarium magisterskie 1 [08-IBIM-S2-SM1] Polish course work seminar: 15 2
Module Language of instruction Form of verification Number of hours ECTS credits
Treści specjalizacji: Obrazowanie i modelowanie materiałów do zastosowań biomedycznych
Elementy fizyki biomateriałów [08-IBIMZ-S2-EFB] Polish course work lecture: 15 2
Fizyczne metody badań biomateriałów [08-IBIMZ-S2-FMBB] Polish course work lecture: 15
laboratory classes: 15
2
Mikroskopia optyczna i stereologia ilościowa [08-IBIMZ-S2-MOiSI] Polish course work lecture: 15
laboratory classes: 15
2
Modelowanie procesów zachodzących w materiałach [08-IBIMZ-S2-MPZwM] Polish course work lecture: 15
laboratory classes: 30
4
Nanomateriały w medycynie [08-IBIMZ-S2-NwM] Polish course work lecture: 15 1
Nauka o materiałach [08-IBIMZ-S2-NoM] Polish exam lecture: 30
laboratory classes: 30
4
Podstawy metod ab initio komputerowego modelowania biomateriałów [08-IBIMZ-S2-PMaiMB] Polish exam lecture: 15
laboratory classes: 30
4
Pracownia magisterska 1 [08-IBIM-S2-PM1] Polish course work laboratory classes: 15 2
Rentgenowskie metody obrazowania materiałów [08-IBIMZ-S2-RMOM] Polish exam lecture: 15
laboratory classes: 30
3
Seminarium magisterskie 2 [08-IBIM-S2-SM2] Polish course work seminar: 15 2
Skaningowe i klasyczne metody elektrochemiczne obrazowania biomateriałów [08-IBIMZ-S2-SiKMEOM] Polish course work lecture: 15
laboratory classes: 30
3
Treści uzupełniające
Wychowanie fizyczne [08-IBIM-S2-WF] Polish course work practical classes: 30 1
Module Language of instruction Form of verification Number of hours ECTS credits
(no information given)
Module Language of instruction Form of verification Number of hours ECTS credits
Treści specjalizacji: Symulacja i modelowanie systemów biomedycznych
Biometria i systemy biometryczne [08-IBIMS-S2-BiSB] Polish course work lecture: 15
laboratory classes: 30
4
Digitalizacja obiektów rzeczywistych [08-IBIMS-S2-DOR] Polish exam laboratory classes: 30 2
Hybrydowe techniki obrazowania [08-IBIMS-S2-HTO] Polish exam lecture: 15
laboratory classes: 30
4
MES i metody numeryczne [08-IBIMS-S2-MiMN] Polish exam laboratory classes: 30 2
Pracownia magisterska 1 [08-IBIM-S2-PM1] Polish course work laboratory classes: 15 2
Praktyczne aspekty eksperymentu biomedycznego [08-IBIMS-S2-PAEB] Polish exam lecture: 15
laboratory classes: 30
4
Seminarium magisterskie 2 [08-IBIM-S2-SM2] Polish course work seminar: 15 2
Symulacje komputerowe [08-IBIMS-S2-SK] Polish course work lecture: 15
laboratory classes: 30
4
Wirtualne laboratoria medyczne [08-IBIMS-S2-WLM] Polish course work laboratory classes: 30 2
Wizualizacja 3D obiektów i systemów biomedycznych [08-IBIMS-S2-W3OiSB] Polish course work lecture: 15
laboratory classes: 30
3
Treści uzupełniające
Wychowanie fizyczne [08-IBIM-S2-WF] Polish course work practical classes: 30 1
Module Language of instruction Form of verification Number of hours ECTS credits
Treści specjalizacji: Obrazowanie i modelowanie materiałów do zastosowań biomedycznych
Metody tribologiczne w analizie warstwy wierzchniej biomateriałów [08-IBIMZ-S2-MTwAWWB] Polish course work lecture: 15
laboratory classes: 15
2
Mikroskopia bliskich oddziaływań [08-IBIMZ-S2-MBO] Polish course work lecture: 15 2
Modelowanie właściwości implantów za pomocą MES [08-IBIMZ-S2-MWIzPM] Polish exam lecture: 15
laboratory classes: 30
3
Nowoczesne techniki obrazowania wiązką elektronów [08-IBIMZ-S2-NTOWE] Polish exam lecture: 15
laboratory classes: 30
3
Pracownia magisterska 2 [08-IBIM-S2-PM2] Polish course work laboratory classes: 30 2
Prototypowanie i druk 3D [08-IBIMZ-S2-PiD3] Polish course work lecture: 15
laboratory classes: 15
2
Seminarium magisterskie 3 [08-IBIM-S2-SM3] Polish course work seminar: 30 9
Treści uzupełniające
Ekonomika przedsiębiorstw i podstawy prawa gospodarczego [08-IBIM-S2-EPiPPG] Polish course work lecture: 15
practical classes: 30
4
Komunikacja interpersonalna [08-IBIM-S2-KI] Polish course work lecture: 15
practical classes: 15
3
Module Language of instruction Form of verification Number of hours ECTS credits
(no information given)
Module Language of instruction Form of verification Number of hours ECTS credits
Treści specjalizacji: Symulacja i modelowanie systemów biomedycznych
Bionika [08-IBIMS-S2-B] Polish exam lecture: 15
laboratory classes: 15
2
Monitorowanie i kontrola obiektów biomedycznych [08-IBIMS-S2-MiKOB] Polish course work lecture: 15
laboratory classes: 15
2
Pracownia magisterska 2 [08-IBIM-S2-PM2] Polish course work laboratory classes: 30 2
Projektowanie systemów analizy i rozpoznawania obrazów [08-IBIMS-S2-PSAiRO] Polish course work laboratory classes: 30 2
Roboty chirurgiczne [08-IBIMS-S2-RR] Polish course work lecture: 15
laboratory classes: 15
2
Seminarium magisterskie 3 [08-IBIM-S2-SM3] Polish course work seminar: 30 9
Symulatory medyczne [08-IBIMS-S2-SM] Polish course work lecture: 15
laboratory classes: 15
2
Technologie szybkiego prototypowania [08-IBIMS-S2-TSP] Polish course work laboratory classes: 30 2
Treści uzupełniające
Ekonomika przedsiębiorstw i podstawy prawa gospodarczego [08-IBIM-S2-EPiPPG] Polish course work lecture: 15
practical classes: 30
4
Komunikacja interpersonalna [08-IBIM-S2-KI] Polish course work lecture: 15
practical classes: 15
3