Numerical Methods
Field of study: Physics
Programme code: W4-S2FZA22.2025

Module name: | Numerical Methods |
---|---|
Module code: | W4-FZ-NM-S2-1-22-11 |
Programme code: | W4-S2FZA22.2025 |
Semester: | winter semester 2025/2026 |
Language of instruction: | English |
Form of verification: | exam |
ECTS credits: | 4 |
Purpose and description of the content of education: | 1. History of classical and ab initio simulation methods.
2. Inter-atomic interaction potentials. Models of rigid and non-rigid molecules, intra- and inter-molecular interactions. Constructing an intermolecular potential. Isolated and bulk molecular systems (periodic boundary conditions, the nearest image convention, spherical truncation of interaction).
3. Typical shapes of computer simulation box. Deterministic methods of computer simulations: Newtonian equations of motion for atomic systems (centers of molecular masses), methods for solution of ordinary differential equations (the Verlet algorithm, the leap-frog method, the velocity form of the Verlet algorithm, predictor corrector method).
4. Molecular dynamics of rigid molecules, description of rotational motion (quaternions), methods for solution of the Euler’s equations (the leap-frog and predictor-corrector method), constraint dynamics – SHAKE method, molecular dynamics of hard spheres.
5. The initial configuration (positions, orientations and velocities in accordance with the required temperature), elimination of the total momentum, reduced (internal) units, control parameters in the equilibration run, forces, shifted and shifted-force potentials.
6. Long-range interactions (Coulomb and dipole interactions), Ewald summation method, errors of summation in the real and reciprocal space – selection of the convergence parameter and cut-off radii in the Ewald method, partial charges in polar molecules.
7. Average values and fluctuations, generalized equipartition, simple thermodynamics averages (energy, temperature, pressure), transforming averages between statistical ensembles, the specific heat.
8. Structural properties (pair distribution function, structure factor), long-range correction of energy and pressure.
9. Time correlation functions and transport coefficients (the diffusion coefficient – the Einstein relation and the velocity correlation function), the diffusion equation in restricted space.
10. Molecular dynamics for micro-canonical, canonical (constraint method, velocity scaling, extended system and Berendsen method), isobaric and isobaric-isothermic ensembles.
11. Stochastic methods of computer simulations: brownian dynamics, Monte Carlo methods (the Metropolis method, isothermic-isobaric and grand canonical Monte Carlo).
12. Basic techniques of ab initio molecular dynamics: Ehrenfest molecular dynamics (EMD), Born-Oppenheimer one (BOMD) and Car-Parinello molecular dynamics (CPMD) (lagrangian and equations of motion). Hellmann-Feynman forces. Comparison of the ab initio molecular dynamics methods.
13. Conjunction of CPMD with the density functional theory. Implementation of the CPMD with plane waves. Electrostatic energy, exchange and correlation energy. Optimizing the Kohn-Sham orbitals. Program organization and layout.
14. Atoms with plan waves – pseudo-potentials, thermostats and barostats, hybrid quantum/classical molecular dynamics.
15. Application of the ab initio molecular dynamics – from materials to biomolecules. Properties from ab initio simulations: electronic structure analyses, infrared spectroscopy, NMR and EPR spectroscopy. |
List of modules that must be completed before starting this module (if necessary): | not applicable |
Learning outcome of the module | Codes of the learning outcomes of the programme to which the learning outcome of the module is related [level of competence: scale 1-5] |
---|---|
knows the basics of computational and IT techniques, supporting work of a physicist and understands their limitations [E1] |
KF_W07 [5/5] |
knows the mathematical formalism useful in the construction and analysis of models physical of medium complexity; understands the consequences of using approximate methods [E2] |
KF_W06 [2/5] |
knows how to use a mathematical apparatus to solve problems of medium complexity [E3] |
KF_U02 [3/5] |
Form of teaching | Number of hours | Methods of conducting classes | Assessment of the learning outcomes | Learning outcomes |
---|---|---|---|---|
lecture [FZ1] | 10 |
Formal lecture/ course-related lecture [a01] |
exam |
E1 |
laboratory classes [FZ2] | 30 |
Working with a computer [d01] |
course work |
E3 |
The student's work, apart from participation in classes, includes in particular: | ||
---|---|---|
Name | Category | Description |
Literature reading / analysis of source materials [a02] | Preparation for classes | reading the literature indicated in the syllabus; reviewing, organizing, analyzing and selecting source materials to be used in class |
Developing practical skills [a03] | Preparation for classes | activities involving the repetition, refinement and consolidation of practical skills, including those developed during previous classes or new skills necessary for the implementation of subsequent elements of the curriculum (as preparation for class participation) |
Getting acquainted with the syllabus content [b01] | Consulting the curriculum and the organization of classes | reading through the syllabus and getting acquainted with its content |
Studying the literature used in and the materials produced in class [c02] | Preparation for verification of learning outcomes | exploring the studied content, inquiring, considering, assimilating, interpreting it, or organizing knowledge obtained from the literature, documentation, instructions, scenarios, etc., used in class as well as from the notes or other materials/artifacts made in class |
Implementation of an individual or group assignment necessary for course/phase/examination completion [c03] | Preparation for verification of learning outcomes | a set of activities aimed at performing an assigned task, to be executed out of class, as an obligatory phase/element of the verification of the learning outcomes assigned to the course |
Analysis of the corrective feedback provided by the academic teacher on the results of the verification of learning outcomes [d01] | Consulting the results of the verification of learning outcomes | reading through the academic teacher’s comments, assessments and opinions on the implementation of the task aimed at checking the level of the achieved learning outcomes |
Attachments |
---|
Module description (PDF) |
Syllabuses (USOSweb) | ||
---|---|---|
Semester | Module | Language of instruction |
(no information given) |