

1.	Field of study	Materials Science and Engineering		
2.	Faculty	Faculty of Science and Technology		
3.	Academic year of entry 2019/2020 (winter term), 2020/2021 (winter term), 2021/2022 (winter term), 2022/2023 (winter term)			
4.	Level of qualifications/degree	first-cycle studies (in engineering)		
5.	Degree profile	general academic		
6.	Mode of study	full-time		

Module:

Mathematical-physical basis of materials science

Module code: IM1A _MFP

1. Number of the ECTS credits: 3

2. Learning outcomes of the module						
code	description	learning outcomes of the programme	level of competence (scale 1-5)			
IM1A_MFP_1	Consolidation of the knowledge about the analysis of mathematical equations as a part of the differential and integral calculus.	IM1A_W01	2			
	Deepening and broadening the analysis of differential and integral calculus applications in diverse examples from the materials engineering. Learning elements of the tensor calculus in relation to the theory of elasticity. Deepening the knowledge about	IM1A_W05	2			
	statistical analysis of measurement results. Acquiring the skill to apply selected numerical techniques to the analysis of measurement results.		2			
IM1A_MFP_2	Gaining the skill of independent resolution of simple mathematical problems from the field of materials engineering using a		2			
	puter. Development of the skill of new knowledge acquisition, problem analysis, drawing conclusions based on mathematical ations, acquiring the skill to interpret ideas and concepts.	IM1A_U13	2			
IM1A_MFP_3	Students are aware of the importance and understand non-technical aspects and effects of materials engineer activities.	IM1A_K02	2			
		IM1A_K05	1			

3. Module description	
	The Mathematical-physical basis of materials science module shall enable students learning the application of differential and integral calculus in the materials science. Students shall: i) master formulation of a research problem in the form of vector, differential and/or integral equations, ii) master the skill of proficient differentiation and integration, iii) learn the numerical analysis, using a computer, of simple physical problems, iv) learn to use a computer in statistical methods of experiment results processing, v) resolve and analyse simple materials science problems related to the application of specified mathematical equations, vi) gain the skill of choosing a proper analysis method for a determined research problem.
Prerequisites	The knowledge of mathematics at the level of vector, differential, and integral calculus as well as basics of physics is required.

4. Assessment of the learning outcomes of the module					
code	type	description	learning outcomes of the module		
IM1A _MFP _w _1			IM1A_MFP_1, IM1A_MFP_2, IM1A_MFP_3		
IM1A _MFP_w _2		Assessment of mastering the skill of independent performance of a problem analysis with the use of mathematical methods.	IM1A_MFP_2		
IM1A _MFP_w _3		Assessment of mathematical principles understanding, their interpretation and testing in materials engineering issues.	IM1A_MFP_3		

5. Forms of teaching							
	form of teaching			required hours of student's own work		assessment of the	
code	type	description (including teaching methods)	number of hours	description	number of hours	learning outcomes of the module	
IM1A_MFP _fs_1	lecture	The lecture shall enable understanding the basic principles of mathematical description of materials properties taking into account the differential and integral calculus. It illustrates general regularities in scientific experiments planning and analysing. The whole is supported by the application of selected numerical techniques and demonstrations with the use of a computer.	30	The work with the recommended literature comprising independent acquisition of knowledge related to basic issues.	10	IM1A _MFP _w_1	
IM1A_MFP _fs_2	laboratory classes	Resolving simple physical problems illustrating the lecture issues, using a computer. Mastering and deepening selected numerical techniques used in materials engineering.	45	Preparation of theoretical basics and issues related to the topic of performed exercise. Independent preparation of a theoretical introduction. Individual preparation of exercise results.	5	IM1A _MFP_w_2, IM1A _MFP_w_3	