

1.	Field of study	Biophysics
2.	Faculty	Faculty of Science and Technology
3.	Academic year of entry	2021/2022 (winter term)
4.	Level of qualifications/degree	second-cycle studies
5.	Degree profile	general academic
6.	Mode of study	full-time

Module:

Introduction to Optical Spectroscopy

Module code: W4-2BF-MB-21-07

1. Number of the ECTS credits: 6

2. Learning outcomes of the module					
code	description	learning outcomes of the programme	level of competence (scale 1-5)		
MB_07_1	students will gain the ability to analyze problems of optics involving nanomaterials, both for the analysis at the local scale and for	KBF_W02	4		
	the exploitation of their specific properties in devices and approaches KBF_W		4		
		KBF_W07	4		
		KBF_W10	4		
MB_07_2	students will develop cross-disciplinary abilities directly connected with other scientific areas	KBF_K10	4		
		KBF_W02	4		

3. Module description	odule description		
Description	Basics of radiation/matter interaction and understanding of emission/absorption spectra of substances in the range near- UV - IR, up to the THz range. Technical and conceptual tools for emission, absorption, Raman spectroscopy. Energy levels of the main physical systems: electronic levels in atoms and molecules, rotational and vibrational levels of molecules, Lorentz-Drude model, electronic levels of impurities (transition metals and rare earth) in crystals, electronic and phononic bands in crystals. Group theory applied to the main energy level systems mentioned above.		
Prerequisites			

4. Assessment of the learning outcomes of the module								
code	type	description	learning outcomes of the module					
MB_07_w_1	exam	Oral final exam, partly fulfilled through a short presentation on a topic chosen in agreement	MB_07_1, MB_07_2					

with the lecturers

5. Forms of teaching								
	form of teaching		required hours of student's own work		assessment of the			
code	type	description (including teaching methods)	number of hours	description	number of hours	learning outcomes of the module		
MB_07_fs_1	lecture	Detailed discussion by the lecturer of the issues listed in the table "module description" using the table and/or multimedia presentations	36	Supplementary reading, working with the textbook	104	MB_07_w_1		